2,286 research outputs found

    Bayesian multiscale deconvolution applied to gamma-ray spectroscopy

    Get PDF
    A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy

    Extended γ‐ray emission in solar flares

    Get PDF
    During the solar flare events on 11 and 15 June 1991, COMPTEL measured extended emission in the neutron capture line for about 5 hours after the impulsive phase. The time profiles can be described by a double exponential decay with decay constants on the order of 10 min for the fast and 200 min for the slow component. Within the statistical uncertainty both flares show the same long‐term behaviour. The spectrum during the extended phase is significantly harder than during the impulsive phase and pions are not produced in significant numbers before the beginning of the extended emission. Our results with the measurements of others allow us to rule out long‐term trapping of particles in non‐turbulent loops to explain the extended emission of these two flares and our data favour models based on continued acceleration

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture

    Gamma ray measurements of the 1991 November 15 solar flare

    Get PDF
    The 1991 November 15 X1.5 flare was a well observed solar event. Comprehensive data from ground-based observatories and spacecraft provide the basis for a contextual interpretation of gamma-ray spectra from the Compton Gamma Ray Observatory (CGRO). In particular, spectral, spatial, and temporal data at several energies are necessary to understand the particle dynamics and the acceleration mechanism(s) within this flare. X-ray images, radio, Ca XIX data and magnetograms provide morphological information on the acceleration region [4,5], while gamma-ray spectral data provide information on the parent ion spectrum. Furthermore, time profiles in hard X-rays and gamma-rays provide valuable information on temporal characteristics of the energetic particles. We report the results of our analysis of the evolution of this flare as a function of energy (∼25 keV–2.5 MeV) and time. These results, together with other high energy data (e.g. from experiments on Yohkoh, Ulysses, and PVO) may assist in identifying and understanding the acceleration mechanism(s) taking place in this event

    COMPTEL observations of gamma‐ray flares in October 1991

    Get PDF
    The COMPTEL experiment on GRO images 0.75–30 MeV celestial gamma‐radiation that falls within its 1 steradian field of view. During observation 12 (primary target Cen A) in October 1991 the sun had been in the fov and several solar flares associated with the active region 6891 had been observed. Time profile and energy spectra had been produced, using COMPTEL’s primary mode of operation (the telescope mode). Additionally the number of counts received in the D2‐single burst detector (the secondary mode of operation) are given. We summarize the preliminary results on all of these flares

    COMPTEL gamma ray and neutron measurements of solar flares

    Get PDF
    COMPTEL on the Compton Gamma Ray Observatory has measured the flux of x‐rays and neutrons from several solar flares. These data have also been used to image the Sun in both forms of radiation. Unusually intense flares occurred during June 1991 yielding data sets that offer some new insight into of how energetic protons and electrons are accelerated and behave in the solar environment. We summarize here some of the essential features in the solar flare data as obtained by COMPTEL during June 1991

    Infrared spectra of WC10 planetary nebulae nuclei

    Get PDF
    The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032

    Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    Get PDF
    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices

    Neutron and gamma‐ray measurements of the solar flare of 1991 June 9

    Get PDF
    The COMPTEL Imaging Compton Telescope on‐board the Compton Gamma Ray Observatory measured significant neutron and γ‐ray fluxes from the solar flare of 9 June 1991. The γ‐ray flux had an integrated intensity (≳1 MeV) of ∼30 cm−2, extending in time from 0136 UT to 0143 UT, while the time of energetic neutron emission extended approximately 10 minutes longer, indicating either extended proton acceleration to high energies or trapping and precipitation of energetic protons. The production of neutrons without accompanying γ‐rays in the proper proportion indicates a significant hardening of the precipitating proton spectrum through either the trapping or extended acceleration process
    corecore