24 research outputs found

    A framework for considering the utility of models when facing tough decisions in public health: a guideline for policy-makers

    Get PDF
    The COVID-19 pandemic has brought the combined disciplines of public health, infectious disease and policy modelling squarely into the spotlight. Never before have decisions regarding public health measures and their impacts been such a topic of international deliberation, from the level of individuals and communities through to global leaders. Nor have models-developed at rapid pace and often in the absence of complete information-ever been so central to the decision-making process. However, after nearly 3 years of experience with modelling, policy-makers need to be more confident about which models will be most helpful to support them when taking public health decisions, and modellers need to better understand the factors that will lead to successful model adoption and utilization. We present a three-stage framework for achieving these ends

    Therapeutic Potential of Nitazoxanide: An Appropriate Choice for Repurposing versus SARS-CoV-2?

    Get PDF
    The rapidly growing COVID-19 pandemic is the most serious global health crisis since the "Spanish flu" of 1918. There is currently no proven effective drug treatment or prophylaxis for this coronavirus infection. While developing safe and effective vaccines is one of the key focuses, a number of existing antiviral drugs are being evaluated for their potency and efficiency against SARS-CoV-2 in vitro and in the clinic. Here, we review the significant potential of nitazoxanide (NTZ) as an antiviral agent that can be repurposed as a treatment for COVID-19. Originally, NTZ was developed as an antiparasitic agent especially against Cryptosporidium spp.; it was later shown to possess potent activity against a broad range of both RNA and DNA viruses, including influenza A, hepatitis B and C, and coronaviruses. Recent in vitro assessment of NTZ has confirmed its promising activity against SARS-CoV-2 with an EC50 of 2.12 μM. Here we examine its drug properties, antiviral activity against different viruses, clinical trials outcomes, and mechanisms of antiviral action from the literature in order to highlight the therapeutic potential for the treatment of COVID-19. Furthermore, in preliminary PK/PD analyses using clinical data reported in the literature, comparison of simulated TIZ (active metabolite of NTZ) exposures at two doses with the in vitro potency of NTZ against SARS-CoV-2 gives further support for drug repurposing with potential in combination chemotherapy approaches. The review concludes with details of second generation thiazolides under development that could lead to improved antiviral therapies for future indications

    Path to Facilitate the Prediction of Functional Amino Acid Substitutions in Red Blood Cell Disorders – A Computational Approach

    Get PDF
    A major area of effort in current genomics is to distinguish mutations that are functionally neutral from those that contribute to disease. Single Nucleotide Polymorphisms (SNPs) are amino acid substitutions that currently account for approximately half of the known gene lesions responsible for human inherited diseases. As a result, the prediction of non-synonymous SNPs (nsSNPs) that affect protein functions and relate to disease is an important task.In this study, we performed a comprehensive analysis of deleterious SNPs at both functional and structural level in the respective genes associated with red blood cell metabolism disorders using bioinformatics tools. We analyzed the variants in Glucose-6-phosphate dehydrogenase (G6PD) and isoforms of Pyruvate Kinase (PKLR & PKM2) genes responsible for major red blood cell disorders. Deleterious nsSNPs were categorized based on empirical rule and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for evaluation of protein structure stability.We argue here that bioinformatics tools can play an important role in addressing the complexity of the underlying genetic basis of Red Blood Cell disorders. Based on our investigation, we report here the potential candidate SNPs, for future studies in human Red Blood Cell disorders. Current study also demonstrates the presence of other deleterious mutations and also endorses with in vivo experimental studies. Our approach will present the application of computational tools in understanding functional variation from the perspective of structure, expression, evolution and phenotype

    <i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

    Get PDF
    BackgroundCurrent approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity.MethodsSARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19.ResultsDaclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans.ConclusionsDaclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy

    Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV

    Full text link
    L’heure du bilan a sonné à l’issue du dernier YAŞ (Yüksek Askeri Şura - Conseil militaire suprême) qui a clos ses travaux le 4 août, après quatre jours tendus de session pendant lesquels le premier ministre a imposé sa présence permanente, et bien souvent ses vues, aux plus hauts responsables militaires du pays. Car la dernière édition du YAŞ a été indiscutablement une nouvelle victoire du gouvernement sur des militaires de plus en plus affaiblis par les coups multiples et variés que leur inf..

    Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka

    No full text
    Chronic kidney disease of unknown etiology was investigated for metal relations in an endemic area by a cross-sectional study with CKD stages G1, G2, G3a, G3b, G4, G5 (ESRD), and endemic and nonendemic controls (EC and NEC) as groups. Subjects with the medical diagnosis were classified into groups by eGFR (SCr, CKD-EPI) and UACR of the study. It determined 24 metals/metalloids in plasma (ICPMS) and metallothionein (MT) mRNA in blood (RT-PCR). MT1A at G3b and MT2A throughout G2&ndash;G5 showed increased transcription compared to NEC (ANOVA, p &lt; 0.01). Both MT1A and MT2A remained metal-responsive as associations emerged between MT2A and human MT inducer Cr (in EC: r = 0.54, p &lt; 0.05, n = 14), and between MT1A and MT2A (in EC pooled with G1&ndash;G5: r = 0.58, p &lt; 0.001, n = 110). Human MT (hMT)-inducers, namely Zn, Cu, As, Pb, and Ni; &Sigma; hMT-inducers; 14 more non-inducer metals; and &Sigma; MT-binding metals remained higher (p &lt; 0.05) in EC as compared to NEC. Declining eGFR or CKD progression increased the burden of Be, Mg, Al, V, Co, Ni, Rb, Cs, Ba, Mn, Zn, Sr, &Sigma; hMT-inducers, and &Sigma; MT-binding metals in plasma, suggesting an MT role in the disease. MT1A/2A mRNA followed UACR (PCA, Dendrogram: similarity, 57.7%). The study provides evidence that proteinuric chronic renal failure may increase plasma metal levels where blood MT2A could be a marker

    B-cells and regulatory T-cells in the microenvironment of HER2+ breast cancer are associated with decreased survival: a real-world analysis of women with HER2+ metastatic breast cancer

    No full text
    Abstract Background Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. Methods We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. Results A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. Conclusions In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies. Graphical Abstrac
    corecore