1,164 research outputs found

    Anisotropic interactions opposing magnetocrystalline anisotropy in Sr3_3NiIrO6_6

    Get PDF
    We report our investigation of the electronic and magnetic excitations of Sr3_3NiIrO6_6 by resonant inelastic x-ray scattering at the Ir L3_3 edge. The intra-t2gt_{2g} electronic transitions are analyzed using an atomic model, including spin-orbit coupling and trigonal distortion of the IrO6_6 octahedron, confronted to {\it ab initio} quantum chemistry calculations. The Ir spin-orbital entanglement is quantified and its implication on the magnetic properties, in particular in inducing highly anisotropic magnetic interactions, is highlighted. These are included in the spin-wave model proposed to account for the dispersionless magnetic excitation that we observe at 90 meV. By counterbalancing the strong Ni2+^{2+} easy-plane anisotropy that manifests itself at high temperature, the anisotropy of the interactions finally leads to the remarkable easy-axis magnetism reported in this material at low temperature

    Crystal Symmetry Lowering in Chiral Multiferroic Ba3_3TaFe3_3Si2_2O14_{14} observed by X-Ray Magnetic Scattering

    Full text link
    Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba3_3TaFe3_3Si2_2O14_{14} at the Fe L2,3L_{2,3} and oxygen KK edges. Below TNT_N (27K\approx27K) we observe the satellite reflections (0,0,τ)(0,0,\tau), (0,0,2τ)(0,0,2\tau), (0,0,3τ)(0,0,3\tau) and (0,0,13τ)(0,0,1-3\tau) where τ0.140±0.001\tau \approx 0.140 \pm 0.001. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane (c^\mathbf{\hat{c}}-axis) magnetic dipole while the (0,0,2τ)(0,0,2\tau) originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe L3L_3 edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase

    Magnetic properties of the honeycomb oxide Na2_2Co2_2TeO6_6

    Full text link
    We have studied the magnetic properties of Na2_2Co2_2TeO6_6, which features a honeycomb lattice of magnetic Co2+^{2+} ions, through macroscopic characterization and neutron diffraction on a powder sample. We have shown that this material orders in a zig-zag antiferromagnetic structure. In addition to allowing a linear magnetoelectric coupling, this magnetic arrangement displays very peculiar spatial magnetic correlations, larger in the honeycomb planes than between the planes, which do not evolve with the temperature. We have investigated this behavior by Monte Carlo calculations using the J1J_1-J2J_2-J3J_3 model on a honeycomb lattice with a small interplane interaction. Our model reproduces the experimental neutron structure factor, although its absence of temperature evolution must be due to additional ingredients, such as chemical disorder or quantum fluctuations enhanced by the proximity to a phase boundary.Comment: 9 pages, 13 figure

    Corrosion Test Plan to Guide Canister Material Selection and Design for a Tuff Repository.

    Get PDF
    NPN-spojevi kao izvor dušika, zamjenjuju dio proteinskih komponenti obroka, a najpoznatiji NPN-spoj koji se primjenjuje u tovu junadi je urea. Urea je specifična i najviše se koristi jer je je lako dostupna i jednostavna za skladištenje, te smanjuje troškove proizvodnje. U radu se utvrđivalo dali se konzumacijom obroka s visokim udjelom Nutribos N78 u smjesi prelaze toksične granice uree, kreatinina i totalnog proteina, te su se rezultati uspoređivali s referentnim vrijednostimaNPN compounds as a source of nitrogen, replace part of protein meal components, the most famous NPN compound used in that junior is urea. Urea is specific and is most widely used because it is easily accessible and easy to store, which reduces production costs. The study found that high nutrition levels of Nutribos N78 consumed in admixture exceeded toxic limits of urea, creatinine and total protein, and compared the results with reference values

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.51083.5\cdot 10^{-8} GeV1^{-1} and 3.21083.2\cdot 10^{-8} GeV1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×1088.0\times10^{-8} GeV1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure

    Summary of OSQAR First Achievements and Main Requests for 2008

    Get PDF
    Abstract - In the first paragraph, OSQAR foremost achievements are summarised together with a brief reminder of its scientific context. In the second paragraph, activities planned for 2008 are briefly reviewed including the expected scientific results. The third paragraph is devoted to the requests addressed to CERN as the host laboratory and as a collaboration member of the OSQAR photon regeneration experiment

    Magnetic fluctuations in frustrated Laves hydrides R(Mn_{1-x}Al_{x})_{2}H_{y}

    Full text link
    By neutron scattering, we have studied the spin correlations and spin fluctuations in frustrated Laves hydrides, where magnetic disorder sets in the topologically frustrated Mn lattice. Below the transition towards short range magnetic order, static spin clusters coexist with fluctuating and alsmost uncorrelated spins. The magnetic response shows a complexe lineshape, connected with the presence of the magnetic inhomogeneities. Its analysis shows the existence of two different processes, relaxation and local excitations, for the spin fluctuations below the transition. The paramagnetic fluctuations are discussed in comparison with classical spin glasses, cluster glasses, and non Fermi liquid itinerant magnets

    Dynamic Participation in Interdistrict Open Enrollment

    Get PDF
    Interdistrict open enrollment is the nation’s largest and most widespread school choice program, but our knowledge of these programs is limited. Drawing on 5 years of student-level data from the universe of public school attendees in Colorado, we perform a three-stage analysis to examine the dynamics of student participation in the state’s interdistrict open enrollment program. First, we explore the characteristics of students who open enroll in a defined baseline year. Second, we analyze the characteristics of students who continue to participate in the program in subsequent years. Finally, we examine the characteristics of students who—conditional on not open enrolling in the defined-baseline year—choose to participate in the program in one or more subsequent years.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore