572 research outputs found

    Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins

    Get PDF
    Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153-149 and zinc-lacking Ml452-151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153-149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452-151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452-151 and Ml153-149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153-149 has formed only amorphous aggregates and Ml452-151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases

    Investigating the properties of TBA variants with twin thrombin binding domains

    Get PDF
    In this paper, we report studies concerning thrombin binding aptamer (TBA) dimeric derivatives in which the 3'-ends of two TBA sequences have been joined by means of linkers containing adenosine or thymidine residues and/or a glycerol moiety. CD and electrophoretic investigations indicate that all modified aptamers are able to form G-quadruplex domains resembling that of the parent TBA structure. However, isothermal titration calorimetry measurements of the aptamer/thrombin interaction point to different affinities to the target protein, depending on the type of linker. Consistently, the best ligands for thrombin show anticoagulant activities higher than TBA. Interestingly, two dimeric aptamers with the most promising properties also show far higher resistances in biological environment than TBA

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    A Novel Generalized Semi-Analytical Approach for Flood Control Reservoir Design

    Get PDF
    Flood control reservoir design requires estimating the total storable water volume or the maximum allowable discharge. This study proposes a novel Generalized Semi-Analytical Approach (GS-AA) to identify the maximum outlet discharge a flood control reservoir can handle for a specific return period. The approach exploits the analytical expression of Flow Duration Reduction (FDR) curves and combines them with an optimization algorithm to find the critical hydrograph and, thus, the hydrograph providing the maximum outlet discharge from the reservoir. The approach models the runoff process of the basin upstream of the reservoir, allowing users to choose any runoff model (RM). The proposed approach shows faster computational times than a fully numerical procedure, enabling potential users to explore and compare multiple reservoir configurations easily. Moreover, this approach addresses flow data limitation issues that prevent FDR curve derivation by correlating them to Intensity Duration Frequency curve parameters, expanding the potential applicability of the procedure in ungauged basins. Finally, results demonstrated the functionality of the procedure regardless of the chosen RM, offering widespread flexibility for users. The proposed GS-AA is a robust and adaptable tool for design and verification purposes to improve flood management strategies

    Age-related changes in the primary motor cortex of newborn to adult domestic pig sus scrofa domesticus

    Get PDF
    The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analy-ses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR-and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development

    Osteopontin expression in healing wounds of horses and in human keloids

    Get PDF
    REASONS FOR PERFORMING STUDY: Convincing evidence shows that persistent or excessive expression of osteopontin (OPN) is linked to fibroproliferation of various organs in laboratory animals and in man, such that its downregulation is a logical therapeutic objective. OBJECTIVES: To investigate OPN expression in an equine model of wound healing and in clinical specimens of equine exuberant granulation tissue and human keloids in an effort to better understand the contribution of this protein to inflammation-associated skin fibrosis. STUDY DESIGN: Description of gene and protein expression in an experimental equine model of wound healing and clinical specimens in horse and man. METHODS: Osteopontin gene expression was evaluated by quantitative PCR, while protein expression was investigated by means of immunohistochemical staining. RESULTS: Quantitative PCR showed that the OPN gene is expressed in normal intact skin of horses and continues to be expressed during the wound-healing process. An increase in gene expression was observed throughout the phases of wound healing, with a final decrease at wound closure. The protein was not detected in normal skin. Keratinocytes in wound-edge samples did not express the protein, whereas dermal immunoreactivity was confined to inflammatory cells. Healed wounds were devoid of staining. Equine exuberant granulation tissue showed immunoreactivity of the surrounding epidermis, infiltrating neutrophils, mononuclear cells, endothelial cells and fibroblasts. Human keloids showed OPN immunoreactivity throughout the epidermis as well as in mononuclear cells and scattered fibroblasts. CONCLUSIONS: Immunohistochemical data show a different pattern of expression between normally healing and fibrotic wounds (exuberant granulation tissue and keloids), thus suggesting a role in fibroproliferation in horses and man

    Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP infl uences secretion of intestinal glands, blood fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This fi nding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in infl ammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinfl ammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from infl ammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in infl ammatory events of the intestine

    The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation

    Get PDF
    Reactive oxygen species (ROS) are produced in cells as normal cellular metabolic by-products. ROS concentration is normally low, but it increases under stress conditions. To stand ROS exposure, organisms evolved series of responsive mechanisms. One such mechanism is protein S-glutathionylation. S-glutathionylation is a post-translational modification typically occurring in response to oxidative stress, in which a glutathione reacts with cysteinyl residues, protecting them from overoxidation. α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. The Arabidopsis genome contains three genes encoding α-amylases. The sole chloroplastic member, AtAMY3, is involved in osmotic stress response and stomatal opening and is redox-regulated by thioredoxins. Here we show that AtAMY3 activity was sensitive to ROS, such as H2O2. Treatments with H2O2 inhibited enzyme activity and part of the inhibition was irreversible. However, in the presence of glutathione this irreversible inhibition was prevented through S-glutathionylation. The activity of oxidized AtAMY3 was completely restored by simultaneous reduction by both glutaredoxin (specific for the removal of glutathione-mixed disulfide) and thioredoxin (specific for the reduction of protein disulfide), supporting a possible liaison between both redox modifications. By comparing free cysteine residues between reduced and GSSG-treated AtAMY3 and performing oxidation experiments of Cys-to-Ser variants of AtAMY3 using biotin-conjugated GSSG, we could demonstrate that at least three distinct cysteinyl residues can be oxidized/glutathionylated, among those the two previously identified catalytic cysteines, Cys499 and Cys587. Measuring the pKa values of the catalytic cysteines by alkylation at different pHs and enzyme activity measurement (pKa1 = 5.70 ± 0.28; pKa2 = 7.83 ± 0.12) showed the tendency of one of the two catalytic cysteines to deprotonation, even at physiological pHs, supporting its propensity to undergo redox post-translational modifications. Taking into account previous and present findings, a functional model for redox regulation of AtAMY3 is proposed
    corecore