1,442 research outputs found

    Measuring Cross-Linguistic Influence in First- and Second-Generation Bilinguals: ERP vs. Acceptability Judgments

    Get PDF
    Two types of Spanish-English bilinguals were tested in an event-related potential (ERP) experiment on a contrast in the two languages exemplified in (1) and (2) in order to investigate linguistic permeability during processing of Spanish (1a and 2a). In Spanish, but not English, absence of the complementizer que is ungrammatical. (1) a. Qué hermana confesó Inés que había comido la tarta? b. *What sister did Inés confess that had eaten the cake? (2) a. *Qué hermana confesó Inés Ø había comido la tarta? b. What sister did Inés confess Ø had eaten the cake? In a first analysis, we grouped subjects by generation and compared ERP responses to que-less vs. que-full sentences. A significant N400 effect was found for first-, but not second-generation, suggesting reduced sensitivity to missing que for the latter. However, a second analysis, using linear mixed modeling to test predictiveness of individual speaker variables revealed generation to be non-predictive of N400 amplitude. Instead, current language use, cumulative exposure to English, and socioeconomic status (SES) were significant predictors for all subjects: increased English use, exposure, and SES resulted in smaller N400 amplitude to the anomaly in Spanish shown in (2a). Our results show that a priori classification of bilinguals masks gradient cross-linguistic effects, and processing is permeable in all bilinguals depending on amount of language use. Results from an acceptability judgment task administered to the same subjects using a subset of the same stimuli show that both subject groups judge que-less and que-full to be equally natural. These results suggest that behavioral measures that rely on metalinguistic judgments may not be good indicators of processing, and that having to appeal to metalinguistic knowledge may mask intrinsic knowledge

    1994 Kentucky Bluegrass Variety Test Report

    Get PDF
    Kentucky bluegrass (Poapratensis) is the third most prominent cool-season grass used in Kentucky for forage, behind tall fescue and orchardgrass. As with all cool-season grasses, Kentucky bluegrass does best in cooler weather, becoming relatively non-productive in hot, dry conditions. It is a high quality, long-lived, rhizomatous grass that is used for both turf and forage. Compared to other cool-season grasses, Kentucky bluegrass is slower to germinate (2-3 weeks) and generally is lower in seedling vigor and herbage yield. Most recent varieties have been developed for turf use. Several have been used in horse pastures even though they were not developed for forage use because Kentucky bluegrass is a low growing species that is tolerant of close grazing by horses. It is highly palatable to horses and has no known toxicities. In horse pastures, Kentucky bluegrass grows well with white clover, a low growing, grazing-tolerant legume, that is also a favorite of horse pasture managers. While it is more suited for use by grazing animals, Kentucky bluegrass may be harvested as hay. Management is similar to that for other cool-season grasses

    The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    Full text link
    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201

    Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action

    Get PDF
    Scientific evidence is abundantly clear and convincing that due to the current trajectory of human-derived emissions of CO2 and other greenhouse gases, the atmosphere and ocean will continue to warm, the ocean will continue to acidify, atmospheric and ocean circulation patterns will be altered, the cryosphere will continue to lose ice in all forms, and sea level will rise

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure

    Determination of the Parity of the Neutral Pion via the Four-Electron Decay

    Full text link
    We present a new determination of the parity of the neutral pion via the double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511 candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi^0 parity, and place a limit on scalar contributions to the pi^0 -> e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The pi^0 gamma* gamma* form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi^0 -> e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio (Eq. 6) correcte

    Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new neutral boson that was reported by the HyperCP experiment with a mass of (214.3 pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) < 9.2 x 10^{-11} at the 90% confidence level. This result rules out the pseudoscalar X0 as an explanation of the HyperCP result under the scenario that the \bar{d}sX0 coupling is completely real

    Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decay KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma via the topology KLπ0πD0γK_{L}\to\pi^{0}\pi^{0}_D\gamma (where πD0γe+e\pi^0_D\to\gamma e^+e^-). Due to Bose statistics of the π0\pi^0 pair and the real nature of the photon, the KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p4)O(p^4). Therefore, this mode probes chiral perturbation theory at O(p6)O(p^6). In this paper we report a determination of an upper limit of 2.43×1072.43\times 10^{-7} (90% CL) for KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma. This is approximately a factor of 20 lower than previous results.Comment: six pages and six figures in the submission. Reformatted for Physics Review

    Dispersive analysis of K_{L mu3} and K_{L e3} scalar and vector form factors using KTeV data

    Get PDF
    Using the published KTeV samples of K_L --> pi^{\pm} e^{\mp} nu and K_L --> pi^{\pm} mu^{\mp} nu decays [1], we perform a reanalysis of the scalar and vector form factors based on the dispersive parameterization [2,3]. We obtain phase space integrals I^e_K = 0.15446 \pm 0.00025 and I^{mu}_K = 0.10219 \pm 0.00025. For the scalar form factor parameterization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best fit results in ln C = 0.1915 \pm 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase space integrals and C are then used to make tests of the Standard Model. Finally, we compare our results with lattice QCD calculations of F_K/F_pi and f_+(0).Comment: 9 pages, 3 figures, to be published in PR
    corecore