4,255 research outputs found

    Can We Identify Sources of Fine Particles Responsible for Exercise-Induced Ischemia on Days with Elevated Air Pollution? The ULTRA Study

    Get PDF
    Epidemiologic studies have shown that ambient particulate matter (PM) has adverse effects on cardiovascular health. Effective mitigation of the health effects requires identification of the most harmful PM sources. The objective of our study was to evaluate relative effects of fine PM [aerodynamic diameter ≤ 2.5 μm (PM(2.5))] from different sources on exercise-induced ischemia. We collected daily outdoor PM(2.5) samples between autumn 1998 and spring 1999 in Helsinki, Finland. The mass of PM(2.5) was apportioned between five sources. Forty-five elderly nonsmoking persons with stable coronary heart disease visited a clinic biweekly for submaximal exercise testing, during which the occurrence of ST segment depressions was recorded. Levels of PM(2.5) originating from local traffic and long-range transport were associated with ST segment depressions > 0.1 mV, with odds ratios at 2-day lag of 1.53 [95% confidence interval (CI), 1.19–1.97] and 1.11 (95% CI, 1.02–1.20) per 1 μg/m(3), respectively. In multipollutant models, where we used indicator elements for sources instead of source-specific PM(2.5), only absorbance (elemental carbon), an indicator of local traffic and other combustion, was associated with ST segment depressions. Our results suggest that the PM fraction originating from combustion processes, notably traffic, exacerbates ischemic heart diseases associated with PM mass

    Associations between PM2.5 and Heart Rate Variability Are Modified by Particle Composition and Beta-Blocker Use in Patients with Coronary Heart Disease

    Get PDF
    BACKGROUND: It has been hypothesized that ambient particulate air pollution is able to modify the autonomic nervous control of the heart, measured as heart rate variability (HRV). Previously we reported heterogeneous associations between particulate matter with aerodynamic diameter < 2.5 mu m (PM2.5) and HRV across three study centers. OBJECTIVE: We evaluated whether exposure misclassification, effect modification by medication, or differences in particle composition could explain die inconsistencies. METHODS: Subjects with coronary heart disease visited clinics biweekly in Amsterdam, the Netherlands; Erfurt, Germany; and Helsinki, Finland for 6-8 months. The standard deviation (SD) of NN intervals on an electrocardiogram (ECG; SDNN) and high frequency (HF) power of HRV was measured with ambulatory ECG during paced breathing. Outdoor levels of PM2.5 were measured at a central site. In Amsterdam and Helsinki, indoor and personal PM2.5 were measured during the 24 hr preceding the clinic visit. PM2.5 was apportioned between sources using principal component analyses. We analyzed associations of indoor/personal PM2.5 elements of PM2.5 and source-specific PM2.5 With HRV using linear regression. RESULTS: Indoor and personal PM2.5 were not associated with HRV. Increased outdoor PM2.5 was associated with decreased SDNN and HF at lags of 2 and 3 days only among persons not using beta-blocker medication. Traffic-related PM2.5 was associated with decreased SDNN, and long-range transported PM2.5 with decreased SDNN and HF, most strongly among persons not using beta blockers. Indicators for PM2.5 from traffic and long-range transport were also associated with decreased HRV. CONCLUSIONS: Our results suggest that differences in the composition of particles, beta-blocker use, and obesity of study subjects may explain some inconsistencies among previous studies on HRV

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    Get PDF
    Publisher Copyright: © 2021 CERN for the benefit of the CMS collaboration..The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip.Peer reviewe

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    Publisher Copyright: © 2021 CERN.During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015 neq/cm2. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker.Peer reviewe

    Long-term clinical and radiographic outcomes and patient satisfaction after adult spinal deformity correction

    Get PDF
    Background and Aims: Adult spinal deformity surgery has increased with the aging population and modern surgical approaches, although it has high complication and reoperation rates. The permanence of radiographic correction, mechanical complications, predictive factors for poor patient-reported outcomes, and patient satisfaction were analyzed. Material and Methods: A total of 79 adult patients were retrospectively analyzed at baseline and 1-9 years after adult spinal deformity correction between 2007 and 2016. Patient-reported outcomes (Oswestry Disability Index, visual analog scale, and Scoliosis Research Society-30 scores), changes in radiographic alignment, indications for reoperation, predictors of poor outcomes according to the Oswestry Disability Index and Scoliosis Research Society-30 scores, and patient satisfaction with management were studied. Results: Oswestry Disability Index and visual analog scale scores (p = 0.001), radiographic correction of thoracic kyphosis, lumbar lordosis, and pelvic retroversion (pPeer reviewe

    Associations between sources of particle number and mortality in four European cities

    Get PDF
    BACKGROUND: The evidence on the association between ultrafine (UFP) particles and mortality is still inconsistent. Moreover, health effects of specific UFP sources have not been explored. We assessed the impact of UFP sources on daily mortality in Barcelona, Helsinki, London, and Zurich. METHODS: UFP sources were previously identified and quantified for the four cities: daily contributions of photonucleation, two traffic sources (fresh traffic and urban, with size mode around 30 nm and 70 nm, respectively), and secondary aerosols were obtained from data from an urban background station. Different periods were investigated in each city: Barcelona 2013-2016, Helsinki 2009-2016, London 2010-2016, and Zurich 2011-2014. The associations between total particle number concentrations (PNC) and UFP sources and daily (natural, cardiovascular [CVD], and respiratory) mortality were investigated using city-specific generalized linear models (GLM) with quasi-Poisson regression. RESULTS: We found inconsistent results across cities, sources, and lags for associations with natural, CVD, and respiratory mortality. Increased risk was observed for total PNC and natural mortality in Helsinki (lag 2; 1.3% [0.07%, 2.5%]), CVD mortality in Barcelona (lag 1; 3.7% [0.17%, 7.4%]) and Zurich (lag 0; 3.8% [0.31%, 7.4%]), and respiratory mortality in London (lag 3; 2.6% [0.84%, 4.45%]) and Zurich (lag 1; 9.4% [1.0%, 17.9%]). A similar pattern of associations between health outcomes and total PNC was followed by the fresh traffic source, for which we also found the same associations and lags as for total PNC. The urban source (mostly aged traffic) was associated with respiratory mortality in Zurich (lag 1; 12.5% [1.7%, 24.2%]) and London (lag 3; 2.4% [0.90%, 4.0%]) while the secondary source was associated with respiratory mortality in Zurich (lag 1: 12.0% [0.63%, 24.5%]) and Helsinki (4.7% [0.11%, 9.5%]). Reduced risk for the photonucleation source was observed for respiratory mortality in Barcelona (lag 2, -8.6% [-14.5%, -2.4%]) and for CVD mortality in Helsinki, as this source is present only in clean atmospheres (lag 1, -1.48 [-2.75, -0.21]). CONCLUSIONS: We found inconsistent results across cities, sources and lags for associations with natural, CVD, and respiratory mortality
    corecore