537 research outputs found
Wavelet entropy and fractional Brownian motion time series
We study the functional link between the Hurst parameter and the Normalized
Total Wavelet Entropy when analyzing fractional Brownian motion (fBm) time
series--these series are synthetically generated. Both quantifiers are mainly
used to identify fractional Brownian motion processes (Fractals 12 (2004) 223).
The aim of this work is understand the differences in the information obtained
from them, if any.Comment: 10 pages, 2 figures, submitted to Physica A for considering its
publicatio
Electron heating in subpicosecond laser interaction with overdense and near-critical plasmas
n this work we investigate electron heating induced by intense laser interaction with micrometric flat solid
foils in the context of laser-driven ion acceleration. We propose a simple law to predict the electron temperature in
a wider range of laser parameters with respect to commonly used existing models. An extensive two-dimensional
(2D) and 3D numerical campaign shows that electron heating is due to the combined actions of j×B
and Brunel effect. Electron temperature can be well described with a simple function of pulse intensity and angle of incidence,
with parameters dependent on pulse polarization. We then combine our model for the electron temperature with
an existing model for laser-ion acceleration, using recent experimental results as a benchmark. We also discuss
an exploratory attempt to model electron temperature for multilayered foam-attached targets, which have been
proven recently to be an attractive target concept for laser-driven ion acceleration
Optimizing band-edge slow light in silicon-on-insulator waveguide gratings
A systematic analysis of photonic bands and group index in silicon grating waveguides is performed, in order to optimize band-edge slow-light behavior in integrated structures with low losses. A combination of numerical methods and perturbation theory is adopted. It is shown that a substantial increase of slow light bandwidth is achieved when decreasing the internal width of the waveguide and the silicon thickness in the cladding region. It is also observed that a reduction of the internal width does not undermine the performance of an adiabatic taper
Ultra-intense laser interaction with nanostructured near-critical plasmas
Near-critical plasmas irradiated at ultra-high laser intensities (I > 1018W/cm2) allow to improve the performances of laser-driven particle and radiation sources and to explore scenarios of great astrophysical interest. Near-critical plasmas with controlled properties can be obtained with nanostructured low-density materials. By means of 3D Particle-In-Cell simulations, we investigate how realistic nanostructures influence the interaction of an ultra-intense laser with a plasma having a near-critical average electron density. We find that the presence of a nanostructure strongly reduces the effect of pulse polarization and enhances the energy absorbed by the ion population, while generally leading to a significant decrease of the electron temperature with respect to a homogeneous near-critical plasma. We also observe an effect of the nanostructure morphology. These results are relevant both for a fundamental understanding and for the foreseen applications of laser-plasma interaction in the near-critical regime
Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy
A simple, reliable method for preparation of bulk Cr tips for Scanning
Tunneling Microscopy (STM) is proposed and its potentialities in performing
high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are
investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to
what happens with conventional W tips, rest atoms of the Si(111)-7x7
reconstruction can be routinely observed, probably due to a different
electronic structure of the tip apex. SP-STM measurements of the Cr(001)
surface showing magnetic contrast are reported. Our results reveal that the
peculiar properties of these tips can be suited in a number of STM experimental
situations
Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets
The interaction of laser pulses with thin grating targets, having a periodic
groove at the irradiated surface, has been experimentally investigated.
Ultrahigh contrast () pulses allowed to demonstrate an enhanced
laser-target coupling for the first time in the relativistic regime of
ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor
of 2.5 of the cut-off energy of protons produced by Target Normal Sheath
Acceleration has been observed with respect to plane targets, around the
incidence angle expected for resonant excitation of surface waves. A
significant enhancement is also observed for small angles of incidence, out of
resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction
Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: dynamic study
We analyze, within the wavelet theory framework, the wandering over a screen
of the centroid of a laser beam after it has propagated through a time-changing
laboratory-generated turbulence. Following a previous work (Fractals 12 (2004)
223) two quantifiers are used, the Hurst parameter, , and the Normalized
Total Wavelet Entropy, . The temporal evolution of both
quantifiers, obtained from the laser spot data stream is studied and compared.
This allows us to extract information of the stochastic process associated to
the turbulence dynamics.Comment: 11 pages, 3 figures, accepted to be published in Physica
In situ cleaning of diagnostic first mirrors: An experimental comparison between plasma and laser cleaning in ITER-relevant conditions
This paper presents an experimental comparison between the plasma cleaning and the laser cleaning techniques of diagnostic first mirrors (FMs). The re-deposition of contaminants sputtered from a tokamak first wall onto FMs could dramatically decrease their reflectance in an unacceptable way for the proper functioning of plasma diagnostic systems. Therefore, suitable in situ cleaning solutions will be required to recover the FMs reflectance in ITER. Currently, plasma cleaning and laser cleaning are considered the most promising solutions. In this work, a set of ITER-like rhodium mirrors contaminated with materials tailored to reproduce tokamak redeposits is employed to experimentally compare plasma and laser cleaning against different criteria (reflectance recovery, mirror integrity, time requirement). We show that the two techniques present different complementary features that can be exploited for the cleaning of ITER FMs. In particular, plasma cleaning ensures an excellent reflectance recovery in the case of compact contaminants, while laser cleaning is faster, gentler, and more effective in the case of porous contaminant. In addition, we demonstrate the potential benefits of a synergistic solution which combines plasma and laser cleaning to exploit the best features of each technique
Tungsten oxide nanowires grown on amorphous-like tungsten films
Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures
- …
