6,169 research outputs found

    Phase-control of directed diffusion in a symmetric optical lattice

    Get PDF
    We demonstrate the phenomenon of directed diffusion in a symmetric periodic potential. This has been realized with cold atoms in a one-dimensional dissipative optical lattice. The stochastic process of optical pumping leads to a diffusive dynamics of the atoms through the periodic structure, while a zero-mean force which breaks the temporal symmetry of the system is applied by phase-modulating one of the lattice beams. The atoms are set into directed motion as a result of the breaking of the temporal symmetry of the system

    Density modulations in an elongated Bose-Einstein condensate released from a disordered potential

    Full text link
    We observe large density modulations in time-of-flight images of elongated Bose-Einstein condensates, initially confined in a harmonic trap and in the presence of weak disorder. The development of these modulations during the time-of-flight and their dependence with the disorder are investigated. We render an account of this effect using numerical and analytical calculations. We conclude that the observed large density modulations originate from the weak initial density modulations induced by the disorder, and not from initial phase fluctuations (thermal or quantum).Comment: Published version; 4+ pages; 4 figure

    Rayleigh scattering and atomic dynamics in dissipative optical lattices

    Get PDF
    We investigate Rayleigh scattering in dissipative optical lattices. In particular, following recent proposals [S. Guibal et al., Phys. Rev. Lett. 78, 4709 (1997); C. Jurczak et al., Phys. Rev. Lett. 77, 1727 (1996)], we study whether the Rayleigh resonance originates from the diffraction on a density grating and is therefore a probe of transport of atoms in optical lattices. It turns out that this is not the case: the Rayleigh line is instead a measure of the cooling rate, while spatial diffusion contributes to the scattering spectrum with a much broader resonance

    Directed transport of Brownian particles in a double symmetric potential

    Full text link
    We investigate the dynamics of Brownian particles in internal state- dependent symmetric and periodic potentials. Although no space or time symmetry of the Hamiltonian is broken, we show that directed transport can appear. We demonstrate that the directed motion is induced by breaking the symmetry of the transition rates between the potentials when these are spatially shifted. Finally, we discuss the possibility of realizing our model in a system of cold particles trapped in optical lattices.Comment: to appear in Physical Review

    Bose-Einstein Condensates in Optical Quasicrystal Lattices

    Full text link
    We analyze the physics of Bose-Einstein condensates confined in 2D quasi-periodic optical lattices, which offer an intermediate situation between ordered and disordered systems. First, we analyze the time-of-flight interference pattern that reveals quasi-periodic long-range order. Second, we demonstrate localization effects associated with quasi-disorder as well as quasiperiodic Bloch oscillations associated with the extended nature of the wavefunction of a Bose-Einstein condensate in an optical quasicrystal. In addition, we discuss in detail the crossover between diffusive and localized regimes when the quasi-periodic potential is switched on, as well as the effects of interactions

    Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation

    Get PDF
    We investigate atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices in the limit of strong atom-atom interactions. We derive the effective Hamiltonian describing the dynamics of the system and discuss its low temperature physics. We demonstrate possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.Comment: minor changes; Physical Review Letters 93, 040401 (2004

    Localization of solitons: linear response of the mean-field ground state to weak external potentials

    Full text link
    Two aspects of bright matter-wave solitons in weak external potentials are discussed. First, we briefly review recent results on the Anderson localization of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402 (2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple perturbation theory. Second, we calculate the linear response of the mean-field soliton shape to a weak, but otherwise arbitrary external potential, with a detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society. V2: minor changes, published versio

    Localized and extended states in a disordered trap

    Full text link
    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.Comment: Published versio

    Disordered Bose Einstein Condensates with Interaction in One Dimension

    Full text link
    We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the interval

    Dipole Oscillations of a Fermi Gas in a Disordered Trap: Damping and Localization

    Full text link
    We theoretically study the dipole oscillations of an ideal Fermi gas in a disordered trap. We show that even weak disorder induces strong damping of the oscillations and we identify a metal-insulator crossover. For very weak disorder, we show that damping results from a dephasing effect related to weak random perturbations of the energy spectrum. For increasing disorder, we show that the Fermi gas crosses over to an insulating regime characterized by strong-damping due to the proliferation of localized states.Comment: published as EPL 88 (2009) 3000
    • …
    corecore