We analyze the physics of Bose-Einstein condensates confined in 2D
quasi-periodic optical lattices, which offer an intermediate situation between
ordered and disordered systems. First, we analyze the time-of-flight
interference pattern that reveals quasi-periodic long-range order. Second, we
demonstrate localization effects associated with quasi-disorder as well as
quasiperiodic Bloch oscillations associated with the extended nature of the
wavefunction of a Bose-Einstein condensate in an optical quasicrystal. In
addition, we discuss in detail the crossover between diffusive and localized
regimes when the quasi-periodic potential is switched on, as well as the
effects of interactions