195 research outputs found

    Beyond the Mean Field Approximation for Spin Glasses

    Full text link
    We study the d-dimensional random Ising model using a Bethe-Peierls approximation in the framework of the replica method. We take into account the correct interaction only inside replicated clusters of spins. Our ansatz is that the interaction of the borders of the clusters with the external world can be described via an effective interaction among replicas. The Bethe-Peierls model is mapped into a single Ising model with a random gaussian field, whose strength (related to the effective coupling between two replicas) is determined via a self-consistency equation. This allows us to obtain analytic estimates of the internal energy and of the critical temperature in d dimensions.Comment: plane TeX file,19 pages. 3 figures may be requested to Paladin at axscaq.aquila.infn.i

    2d frustrated Ising model with four phases

    Full text link
    In this paper we consider a 2d random Ising system on a square lattice with nearest neighbour interactions. The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is admitted. More precisely, the vertical bonds are supposed to be non random while the horizontal bonds alternate: one row of all non random horizontal bonds is followed by one row where they are independent dichotomic random variables. We solve the model using an approximate approach that replace the quenched average with an annealed average under the constraint that the number of frustrated plaquettes is keep fixed and equals that of the true system. The surprising fact is that for some choices of the parameters of the model there are three second order phase transitions separating four different phases: antiferromagnetic, glassy-like, ferromagnetic and paramagnetic.Comment: 17 pages, Plain TeX, uses Harvmac.tex, 4 ps figures, submitted to Physical Review

    Predictability in Systems with Many Characteristic Times: The Case of Turbulence

    Full text link
    In chaotic dynamical systems, an infinitesimal perturbation is exponentially amplified at a time-rate given by the inverse of the maximum Lyapunov exponent λ\lambda. In fully developed turbulence, λ\lambda grows as a power of the Reynolds number. This result could seem in contrast with phenomenological arguments suggesting that, as a consequence of `physical' perturbations, the predictability time is roughly given by the characteristic life-time of the large scale structures, and hence independent of the Reynolds number. We show that such a situation is present in generic systems with many degrees of freedom, since the growth of a non-infinitesimal perturbation is determined by cumulative effects of many different characteristic times and is unrelated to the maximum Lyapunov exponent. Our results are illustrated in a chain of coupled maps and in a shell model for the energy cascade in turbulence.Comment: 24 pages, 10 Postscript figures (included), RevTeX 3.0, files packed with uufile

    Bethe-Peierls Approximation for the 2D Random Ising Model

    Full text link
    The partition function of the 2d Ising model with random nearest neighbor coupling is expressed in the dual lattice made of square plaquettes. The dual model is solved in the the mean field and in different types of Bethe-Peierls approximations, using the replica method.Comment: Plane TeX file, 21 pages, 5 figures available under request to [email protected]

    Transition to Chaos in a Shell Model of Turbulence

    Full text link
    We study a shell model for the energy cascade in three dimensional turbulence at varying the coefficients of the non-linear terms in such a way that the fundamental symmetries of Navier-Stokes are conserved. When a control parameter ϵ\epsilon related to the strength of backward energy transfer is enough small, the dynamical system has a stable fixed point corresponding to the Kolmogorov scaling. This point becomes unstable at ϵ=0.3843...\epsilon=0.3843... where a stable limit cycle appears via a Hopf bifurcation. By using the bi-orthogonal decomposition, the transition to chaos is shown to follow the Ruelle-Takens scenario. For ϵ>0.3953..\epsilon > 0.3953.. the dynamical evolution is intermittent with a positive Lyapunov exponent. In this regime, there exists a strange attractor which remains close to the Kolmogorov (now unstable) fixed point, and a local scaling invariance which can be described via a intermittent one-dimensional map.Comment: 16 pages, Tex, 20 figures available as hard cop

    The Viscous Lengths in Hydrodynamic Turbulence are Anomalous Scaling Functions

    Full text link
    It is shown that the idea that scaling behavior in turbulence is limited by one outer length LL and one inner length η\eta is untenable. Every n'th order correlation function of velocity differences \bbox{\cal F}_n(\B.R_1,\B.R_2,\dots) exhibits its own cross-over length ηn\eta_{n} to dissipative behavior as a function of, say, R1R_1. This length depends on nn {and on the remaining separations} R2,R3,R_2,R_3,\dots. One result of this Letter is that when all these separations are of the same order RR this length scales like ηn(R)η(R/L)xn\eta_n(R)\sim \eta (R/L)^{x_n} with xn=(ζnζn+1+ζ3ζ2)/(2ζ2)x_n=(\zeta_n-\zeta_{n+1}+\zeta_3-\zeta_2)/(2-\zeta_2), with ζn\zeta_n being the scaling exponent of the nn'th order structure function. We derive a class of scaling relations including the ``bridge relation" for the scaling exponent of dissipation fluctuations μ=2ζ6\mu=2-\zeta_6.Comment: PRL, Submitted. REVTeX, 4 pages, I fig. (not included) PS Source of the paper with figure avalable at http://lvov.weizmann.ac.il/onlinelist.htm

    MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins

    Get PDF
    The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility

    Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation

    Full text link
    We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation (DNS) data. We show that this approach reproduces the shape evolution of velocity increment probability density functions (PDF) from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from hmin0.18h_{min} \approx 0.18 to hmax1h_{max} \approx 1, as the signature of the highly intermittent nature of Lagrangian velocity fluctuations.Comment: 5 pages, 3 figures, to appear in PR

    Integral correlation measures for multiparticle physics

    Full text link
    We report on a considerable improvement in the technique of measuring multiparticle correlations via integrals over correlation functions. A modification of measures used in the characterization of chaotic dynamical sytems permits fast and flexible calculation of factorial moments and cumulants as well as their differential versions. Higher order correlation integral measurements even of large multiplicity events such as encountered in heavy ion collisons are now feasible. The change from ``ordinary'' to ``factorial'' powers may have important consequences in other fields such as the study of galaxy correlations and Bose-Einstein interferometry.Comment: 23 pages, 6 tar-compressed uuencoded PostScript figures appended, preprint TPR-92-4

    Geometric dynamical observables in rare gas crystals

    Full text link
    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.
    corecore