68 research outputs found

    Influenza interaction with cocirculating pathogens, and its impact on surveillance, pathogenesis and epidemic profile: a key role for mathematical modeling

    Get PDF
    ABSTRACT Evidence is mounting that influenza virus, a major contributor to the global disease burden, interacts with other pathogens infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. That necessity is particularly true for mathematical modeling studies, which have become critical in public health decision-making, despite their usually focusing on lone influenza virus acquisition and infection, thereby making broad oversimplifications regarding pathogen ecology. Herein, we review evidence of influenza virus interaction with bacteria and viruses, and the modeling studies that incorporated some of these. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitides , respiratory syncytial virus, human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. A notable exception is the recent modeling of the pneumococcus-influenza interaction, which highlighted potential influenza-related increased pneumococcal transmission and pathogenicity. That example demonstrates the power of dynamic modeling as an approach to test biological hypotheses concerning interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and misinterpretations. Using simple transmission models, we illustrate how existing interactions might impact public health surveillance systems and demonstrate that the development of multipathogen models is essential to assess the true public health burden of influenza, and help improve planning and evaluation of control measures. Finally, we identify the public health needs, surveillance, modeling and biological challenges, and propose avenues of research for the coming years. Author Summary Influenza is a major pathogen responsible for important morbidity and mortality burdens worldwide. Mathematical models of influenza virus acquisition have been critical to understanding its epidemiology and planning public health strategies of infection control. It is increasingly clear that microbes do not act in isolation but potentially interact within the host. Hence, studying influenza alone may lead to masking effects or misunderstanding information on its transmission and severity. Herein, we review the literature on bacterial and viral species that interact with the influenza virus, interaction mechanisms, and mathematical modeling studies integrating interactions. We report evidence that, beyond the classic secondary bacterial infections, many pathogenic bacteria and viruses probably interact with influenza. Public health relevance of pathogen interactions is detailed, showing how potential misreading or a narrow outlook might lead to mistaken public health decisionmaking. We describe the role of mechanistic transmission models in investigating this complex system and obtaining insight into interactions between influenza and other pathogens. Finally, we highlight benefits and challenges in modeling, and speculate on new opportunities made possible by taking a broader view: including basic science, clinical relevance and public health

    Estimating the impact of influenza on the epidemiological dynamics of SARS-CoV-2

    Get PDF
    As in past pandemics, co-circulating pathogens may play a role in the epidemiology of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In particular, experimental evidence indicates that influenza infection can up-regulate the expression of ACE2—the receptor of SARS-CoV-2 in human cells—and facilitate SARS-CoV-2 infection. Here we hypothesized that influenza impacted the epidemiology of SARS-CoV-2 during the early 2020 epidemic of COVID-19 in Europe. To test this hypothesis, we developed a population-based model of SARS-CoV-2 transmission and of COVID-19 mortality, which simultaneously incorporated the impact of non-pharmaceutical control measures and of influenza on the epidemiological dynamics of SARS-CoV-2. Using statistical inference methods based on iterated filtering, we confronted this model with mortality incidence data in four European countries (Belgium, Italy, Norway, and Spain) to systematically test a range of assumptions about the impact of influenza. We found consistent evidence for a 1.8–3.4-fold (uncertainty range across countries: 1.1 to 5.0) average population-level increase in SARS-CoV-2 transmission associated with influenza during the period of co-circulation. These estimates remained robust to a variety of alternative assumptions regarding the epidemiological traits of SARS-CoV-2 and the modeled impact of control measures. Although further confirmatory evidence is required, our results suggest that influenza could facilitate the spread and hamper effective control of SARS-CoV-2. More generally, they highlight the possible role of co-circulating pathogens in the epidemiology of COVID-19

    Seasonality of urinary tract infections in the United Kingdom in different age groups: longitudinal analysis of The Health Improvement Network (THIN)

    Get PDF
    Evidence regarding the seasonality of urinary tract infection (UTI) consultations in primary care is conflicting and methodologically poor. To our knowledge, this is the first study to determine whether this seasonality exists in the UK, identify the peak months and describe seasonality by age. The monthly number of UTI consultations (N = 992 803) and nitrofurantoin and trimethoprim prescriptions (N = 1 719 416) during 2008-2015 was extracted from The Health Improvement Network (THIN), a large nationally representative UK dataset of electronic patient records. Negative binomial regression models were fitted to these data to investigate seasonal fluctuations by age group (14-17, 18-24, 25-45, 46-69, 70-84, 85+) and by sex, accounting for a change in the rate of UTI over the study period. A September to November peak in UTI consultation incidence was observed for ages 14-69. This seasonality progressively faded in older age groups and no seasonality was found in individuals aged 85+, in whom UTIs were most common. UTIs were rare in males but followed a similar seasonal pattern than in females. We show strong evidence of an autumnal seasonality for UTIs in individuals under 70 years of age and a lack of seasonality in the very old. These findings should provide helpful information when interpreting surveillance reports and the results of interventions against UTI

    On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community

    Get PDF
    The evolution of drug resistant bacteria is a severe public health problem, both in hospitals and in the community. Currently, some countries aim at concentrating highly specialized services in large hospitals in order to improve patient outcomes. Emergent resistant strains often originate in health care facilities, but it is unknown to what extent hospital size affects resistance evolution and the resulting spillover of hospital-associated pathogens to the community. We used two published datasets from the US and Ireland to investigate the effects of hospital size and controlled for several confounders such as antimicrobial usage, sampling frequency, mortality, disinfection and length of stay. The proportion of patients acquiring both sensitive and resistant infections in a hospital strongly correlated with hospital size. Moreover, we observe the same pattern for both the percentage of resistant infections and the increase of hospital-acquired infections over time. One interpretation of this pattern is that chance effects in small hospitals impede the spread of drug-resistance. To investigate to what extent the size distribution of hospitals can directly affect the prevalence of antibiotic resistance, we use a stochastic epidemiological model describing the spread of drug resistance in a hospital setting as well as the interaction between one or several hospitals and the community. We show that the level of drug resistance typically increases with population size: In small hospitals chance effects cause large fluctuations in pathogen population size or even extinctions, both of which impede the acquisition and spread of drug resistance. Finally, we show that indirect transmission via environmental reservoirs can reduce the effect of hospital size because the slow turnover in the environment can prevent extinction of resistant strains. This implies that reducing environmental transmission is especially important in small hospitals, because such a reduction not only reduces overall transmission but might also facilitate the extinction of resistant strains. Overall, our study shows that the distribution of hospital sizes is a crucial factor for the spread of drug resistance

    Impact of Capsular Switch on Invasive Pneumococcal Disease Incidence in a Vaccinated Population

    Get PDF
    BACKGROUND: Despite the dramatic decline in the incidence of invasive pneumococcal disease (IPD) observed since the introduction of conjugate vaccination, it is feared that several factors may undermine the future effectiveness of the vaccines. In particular, pathogenic pneumococci may switch their capsular types and evade vaccine-conferred immunity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we first review the literature and summarize the available epidemiological data on capsular switch for S. pneumoniae. We estimate the weekly probability that a persistently carried strain may switch its capsule from four studies, totalling 516 children and 6 years of follow-up, at 1.5x10(-3)/week [4.6x10(-5)-4.8x10(-3)/week]. There is not enough power to assess an increase in this frequency in vaccinated individuals. Then, we use a mathematical model of pneumococcal transmission to quantify the impact of capsular switch on the incidence of IPD in a vaccinated population. In this model, we investigate a wide range of values for the frequency of vaccine-selected capsular switch. Predictions show that, with vaccine-independent switching only, IPD incidence in children should be down by 48% 5 years after the introduction of the vaccine with high coverage. Introducing vaccine-selected capsular switch at a frequency up to 0.01/week shows little effect on this decrease; yearly, at most 3 excess cases of IPD per 10(6) children might occur due to switched pneumococcal strains. CONCLUSIONS: Based on all available data and model predictions, the existence of capsular switch by itself should not impact significantly the efficacy of pneumococcal conjugate vaccination on IPD incidence. This optimistic result should be tempered by the fact that the selective pressure induced by the vaccine is currently increasing along with vaccine coverage worldwide; continued surveillance of pneumococcal populations remains of the utmost importance, in particular during clinical trials of the new conjugate vaccines

    Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature

    Full text link
    corecore