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ABSTRACT

Evidence is mounting that influenza virus, a major contributor to the global disease burden,
interacts with other pathogens infecting the human respiratory tract. Taking into account
interactions with other pathogens may be critical to determining the real influenza burden
and the full impact of public health policies targeting influenza. That necessity is particularly
true for mathematical modeling studies, which have become critical in public health
decision-making, despite their usually focusing on lone influenza virus acquisition and
infection, thereby making broad oversimplifications regarding pathogen ecology. Herein, we
review evidence of influenza virus interaction with bacteria and viruses, and the modeling
studies that incorporated some of these. Despite the many studies examining possible
associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus,
Haemophilus influenzae, Neisseria meningitides, respiratory syncytial virus, human
rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have
integrated other pathogens alongside influenza. A notable exception is the recent modeling
of the pneumococcus—influenza interaction, which highlighted potential influenza-related
increased pneumococcal transmission and pathogenicity. That example demonstrates the
power of dynamic modeling as an approach to test biological hypotheses concerning
interaction mechanisms and estimate the strength of those interactions. We explore how
different interference mechanisms may lead to unexpected incidence trends and
misinterpretations. Using simple transmission models, we illustrate how existing interactions
might impact public health surveillance systems and demonstrate that the development of
multipathogen models is essential to assess the true public health burden of influenza, and
help improve planning and evaluation of control measures. Finally, we identify the public
health needs, surveillance, modeling and biological challenges, and propose avenues of
research for the coming years.

Author Summary

Influenza is a major pathogen responsible for important morbidity and mortality burdens
worldwide. Mathematical models of influenza virus acquisition have been critical to
understanding its epidemiology and planning public health strategies of infection control. It
is increasingly clear that microbes do not act in isolation but potentially interact within the
host. Hence, studying influenza alone may lead to masking effects or misunderstanding
information on its transmission and severity. Herein, we review the literature on bacterial
and viral species that interact with the influenza virus, interaction mechanisms, and
mathematical modeling studies integrating interactions. We report evidence that, beyond
the classic secondary bacterial infections, many pathogenic bacteria and viruses probably
interact with influenza. Public health relevance of pathogen interactions is detailed, showing
how potential misreading or a narrow outlook might lead to mistaken public health decision-
making. We describe the role of mechanistic transmission models in investigating this
complex system and obtaining insight into interactions between influenza and other
pathogens. Finally, we highlight benefits and challenges in modeling, and speculate on new
opportunities made possible by taking a broader view: including basic science, clinical
relevance and public health.
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Introduction

Influenza virus is a major contributor to the global disease burden, and exploration of its
pathogenesis, epidemiology, and evolution has occupied generations of scientists. Its
complex seasonality, antigenic drift of surface proteins, wide spectrum of severity, and
capacity to cross species and cause epidemics or pandemics are all characteristics that make
the virus so difficult to control [1].

The human respiratory tract is an important reservoir of bacteria, fungi, viruses,
bacteriophages, archaea and eukaryotes [2], harboring diverse communities of commensal,
opportunistic and pathogenic microorganisms. It has been suggested that some of these
species enter into non-neutral relationships [3], including competition for resources,
synergism with the host immune system, or physiological modifications that alter the normal
colonization or infection processes. The contribution of these phenomena to the influenza-
infection burden is largely unknown.

In terms of public health, what is understood concerning influenza transmission or
severity may therefore be incomplete or misguided due to ignorance of the effect of
interacting pathogens. On one hand, large-scale influenza vaccination programs may
unexpectedly impact other infections due to an indirect rise or fall in the risk of contracting
them in a pool of influenza-infected individuals [4]. For example, if influenza outcompetes
another virus and holds it at bay, an influenza vaccination program could result in an
upsurge in the competitor. On the other hand, the introduction of measures to control
bacterial infections (e.g. pneumococcal vaccines) may indirectly and positively impact the
influenza disease burden as secondary bacterial pneumonia are associated with severe
outcomes of influenza.

Seasonal influenza generates a huge burden each year during the wintertime in
temperature regions and with more complex seasonal patterns in tropical regions [5].
However, influenza pandemics frequently occur outside of the usual season, and generate
an unpredictable and often large burden in morbidity, mortality, and cost [6,7], mostly due
to devastating role of secondary bacterial infections [8,9]. This out-of-season circulation of
pandemic strains takes place in different climatic and ecological milieus than seasonal
strains, and therefore pandemic strains may interact with different coinfectors. It is
therefore critically important to pandemic preparedness to understand competitive and
synergistic relationships. Considering influenza in a context of interactions with other
environmental species, both at the individual level from a clinical perspective, or at a
population level from an epidemiological perspective, is vital to improve our understanding
and control of virus transmission and the risk of developing disease on infection.

Mathematical modeling has been a key tool in infectious diseases for many years because
it links the transmission of an infection from person-to-person to the dynamics of the
infection at a population level [10]. Models allow researchers to probe the complex
intricacies of transmission, and play forward the effects on an individual to see the impact on
population level infection dynamics. Researchers can therefore easily create counterfactuals:
“what if” scenarios; where vaccination rates, contact patterns, health behaviors, or any
number of other factors, are different.

Models of influenza virus transmission have proved very useful in expanding knowledge
of influenza biology, evolution and epidemiology. For example, models of evolutionary
change and immunity aim to predict the dominant strain of influenza in the coming season
[11]. Spatially explicit models have convincingly linked commuting movements to the spread
of influenza in the USA [12]. Models have also been crucial to public health, contributing to
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the optimization of control strategies, including use of vaccines and antivirals [13-19]. As the
modeling field has developed, there has been effort to improve realism by incorporating
heterogeneity in human contact patterns, age-related susceptibility, cross immunity after
previous infections [18,20-23], and the potential effect of environmental variables on
transmission [12,24]. Notably the vast majority of modeling work has neglected the
microbial environment. Most mathematical and computational models of influenza are
focused on single or sequential influenza-only infections and have broadly simplified
pathogen ecology. For example, models have not been exploited to estimate the indirect
effect of seasonal influenza vaccination on the incidence of severe bacterial infections in the
elderly. Further, despite secondary bacterial infections being recognized as an important
cause of mortality, modeling used to plan vaccine interventions during the pandemic in the
considered influenza transmission alone [25].

The authors of relatively recent literature reviews gathered biological and epidemiological
evidence for interactions between influenza virus and respiratory bacteria or viruses
[3,26,27], but did not consider mechanistic transmission models. Mathematical models can
be used to investigate mechanisms of interaction, and visualize the pathological and
epidemiological patterns that result from them. Model outputs can be compared with or
fitted to data, thereby enabling estimation of both the probability of such interactions, and
the strength of the interaction. Estimation can be made across geographic regions (eg.
winter seasonal vs year-round-transmission), for different virus subtypes (e.g. seasonal vs
pandemic), and in different age groups (e.g. infants vs elderly). Computational and
mathematical models to study influenza with other respiratory pathogens are currently
underutilized.

In this review, we report evidence of influenza interaction with other pathogens and
systematically review the modeling studies on influenza coinfection. We address how
different interference mechanisms might lead to unexpected epidemiological patterns and
misinterpretations. Finally, we identify public health needs, modeling and biological
challenges, and propose avenues of research for the coming years.

Mechanisms of interaction

Here, “interaction” refers to any process by which infection caused by one pathogen
affects the probability, timing, or natural history of infection by another. This process
includes a wide range of mechanisms that can involve direct connections between the two
pathogens, e.g. at the cellular level, or indirect interactions through an intermediate factor
that influences the other. The indirect consequences of these interactions are described
later. For influenza virus, interactions with bacterial or viral species can occur at several
scales (Fig 1). Interacting pathogens may have two distinct profiles: natural human
commensals, usually bacteria, which cause mainly asymptomatic carriage or mild symptoms
often for long durations of weeks to months; or epidemic pathogens causing infection for
shorter durations, from a few days to a few weeks. These two distinct epidemic profiles
potentially involve different modes of interaction and lead to different levels of
consequences. Here we detail proven and potential interaction mechanisms (Fig 1).

Within-Host Interactions

At the cellular level, interactions involve both direct and indirect mechanisms. First,
influenza genes or gene products can enhance or inhibit the replication of other viruses or
potential infection by bacteria [28] by direct interaction with pathogen proteins or nucleic
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acids. Further, indirect competition for host resources can occur, when pathogens compete
for target cells, receptors, or cellular products required for replication, thus preventing or
inhibiting superinfection by a secondary virus. Influenza-infected cells may also release cell-
signaling molecules that could increase or decrease the probability of coinfection.

During infection influenza virus impairs innate and adaptive host defenses [29,30].
Mechanisms include altered neutrophil recruitment and function, leading to defective
bacterial clearance, diminished production of alveolar macrophages [31] and inhibition of T-
cell-mediated immunity [30]. Infection with a second virus could be modulated similarly, e.g.
by the production of cross-reactive antibodies or cell-mediated immunity that prevents or
facilitates this infection. Physiological changes induced by the host response to infection may
have ecological consequences. For instance, lung-tissue damage [31] and the induction of
type-1 interferon signaling were shown to promote bacterial colonization [30], and broadly
inhibit virus replication [32]. Damage to lung cells caused by influenza infection, such as
influenza neuraminidase stripping sialic acids from the cell surface, amplifies bacterial
adherence and invasion [26], and could potentially change the likelihood of infection by
another virus. Symptomatic responses to infection, like fever, have also been shown to act
as “danger signals” for bacteria, e.g. meningococci, which react by enhancing bacterial
defenses against human immune cells [33]. In contrast, fever may diminish viral replication
rate, thereby lowering the probability of coinfection. Not all interactions depend on what
happens after the influenza infection: the pre-infection respiratory flora of infected
individuals may partially account for the variability of influenza infection severity and
outcome [27]. For example, in animal studies, S. aureus colonization was shown to trigger
viral load rebounds and reduced virus clearance [34-36].

Population-Level Interactions

Behavioral responses to influenza infection can also indirectly impact the transmission of
bacteria or other viruses. On one hand, people with severe influenza symptoms are likely to
stay home, modifying their contact patterns, and making acquisition of second infections
unlikely [37,38]. On the other hand, individuals with milder symptoms might maintain their
regular activities, which could increase bacterial transmission to other individuals (as
observed for tuberculosis [39]) or increase the chance of acquiring a second infection.
Person-to-person variation in care seeking and medication use, such as of antivirals,
antibiotics, antipyretics or vaccine(s) can also influence the risk of coinfection. For example,
use of the pneumococcal conjugate vaccine has decreased carriage of the bacteria in some
contexts [40,41], which may lead to a decreased chance of observing influenza-
pneumococcal coinfections. Public health policies, such as vaccination or pharmaceutical
recommendations targeting one pathogen may also indirectly impact another (Fig 2). Further
discussion of the effect of public health interventions is given in the population impact
section.

Evidence of interaction

Several literature reviews described evidence of interactions between influenza virus and
other respiratory bacterial or viral pathogens [3,26]. Here we describe the viruses and
bacteria that potentially interact with influenza by gathering recent findings from laboratory
and epidemiological studies for bacteria and viruses (Supplementary Section A).

Influenza-bacterial interactions
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Experimental results suggest that most of the pathogenic and commensal bacteria
present in the nasopharynx may directly or indirectly interfere with influenza infection
during host colonization or infection (Table 1). The best-studied influenza—bacterial
interaction is with Streptococcus pneumoniae [3]. Influenza is thought to increase bacterial
adherence and facilitate the progression from carriage to severe disease [27,42], although
evidence from population studies is not so clear-cut [43-46]. Influenza was also shown to
impair metbhicillin-resistant Staphylococcus aureus (MRSA) clearance in coinfected mice,
thereby increasing their susceptibility to MRSA infection [47]. Similarly in mice, increased
severity of Haemophilus influenzae induced by influenza virus was suggested based on
experiments of sequential infection with sublethal influenza then H. influenzae doses [48].
Notably, ecological studies revealed a positive association between influenza and Neisseria
meningitides incidence [49] and those of in vitro studies suggested that direct interaction
between influenza A neuraminidase and the N. meningitidis capsule enhanced bacterial
adhesion to cultured epithelial cells [50]. Lastly, in patients with pulmonary tuberculosis
there is evidence of increased risk of severe outcomes on influenza infection [51]. This
finding was supported by experiments in mice [52] which demonstrated that Mycobacterium
tuberculosis and influenza coinfected mice mounted weaker immune responses specific to
Mycobacterium bovis Bacillus Calmette—Guerin (BCG) in the lungs compared to mice infected
with BCG alone.

Virus-virus interactions

Within its family, influenza interacts between types (A and B), subtypes (e.g. H3N2, HIN1)
and strains. Competitive exclusion due to homologous immunity is widely accepted [53,54],
and has been applied extensively in models of influenza-strain coexistence [55,56]. Antigenic
change (measured through antigenic distance) occurs constantly in influenza, strongly
indicating that the virus escapes from immunity resulting from prior infection by genetic
change [57]. There is mounting evidence that the first influenza infection is important, and
may affect severity of future infections [58-60]. Some evidence also supports the finding
that influenza can interact with other influenza viruses, and non-influenza respiratory viruses
via non-specific immunity following infection [61,62].

For non-influenza interactions, many viruses are suspected of interfering with influenza
virus acquisition, based on different types of studies (Table 2). During the 2009 influenza
pandemic, Casalegno et al. reported that, in France, the second pandemic wave was delayed
due to the September rhinovirus epidemic [63], even though the shift was not observed in
other countries [64,65]. Coinfection by the two viruses might also enhance disease severity
for individuals [66-68], although evidence is discordant [69-71]. Similarly, competitive
interaction with RSV has been posited for many years [72,73], and some evidence was found
for delayed RSV epidemics due to the second wave of the 2009 pandemic in France [74] and
tropical regions [75,76]. There is discrepancy in the findings of interaction between influenza
and RSV, with most studies finding increased severity [71,77,78] whereas others found no
effect [66] and some found less severity [79]. Competitive interaction with parainfluenza
viruses was also inferred, based on less frequent coinfection pairs than expected [80], but
that observation is not consistent across studies [81-83]. In terms of severity, parainfluenza
and influenza coinfection is usually more severe than influenza alone [66,68,84] but not
always [69,70].

The general pattern is that bacteria tend to synergize with influenza, often boosting
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transmission of either pathogen, or increasing invasion of the bacteria following influenza
infection. It is not always clear if this is a true synergy — where both pathogens benefit — or
rather that influenza facilitates bacterial invasion. In contrast, viral pathogens tend to form
competitive interactions with influenza, although whether these are direct, specific
interactions with particular other viruses, or the result of an “early advantage” to the first
infector, remains unclear. This pattern may occur because of the differing natural histories of
bacteria and viruses; where the former tends to infect hosts for long time periods, and the
latter has shorter infections, more similar to the natural history of influenza itself.

Impact of Interactions at the Population Level

Although coinfections occur at the host level, their consequences are far-reaching (Fig 2).
Coinfection may alter the natural history, severity or timing of illness in an individual, and
thereby modify the morbidity, healthcare-seeking behavior and treatment of that individual.
Heterogeneity in these can affect the probability of, and timing of, reporting disease,
thereby transferring the effect from individual hosts to the population level.

Development and implementation of public health policies rely on analyses of population
surveillance data on influenza epidemics and burden. Policies then generate changes in
medical interventions at the population level, e.g. change in vaccination rates, or at the
individual level, e.g. recommendations for antibiotics or antivirals in certain groups. These
public health interventions then have their own impacts on the dynamics of pathogens and
coinfections. Therefore as coinfections may alter surveillance data, and policies based on
evidence from surveillance data may alter coinfection or interference risk, there is a complex
cycle of dependence, which highlights the difficulty—as well as the potential importance—of
assessing the impact of coinfections (Fig 2).

To date, most of the published quantitative analyses of interactions rely on statistical
association between incident cases of influenza-like-illness (ILI) and other infections based
on regression and correlation analyses [85,86]. A major methodological challenge of
detecting interactions is that significant correlation between epidemics of two pathogens in
surveillance data may result from either a true biological direct or indirect interaction, or
may be confounding as a result of the two pathogens sharing common ecological conditions
(e.g. cold weather). Regression models do not formalize the transmission process or
biological mechanism of interaction. Instead, they describe simple functional links between,
for example, the incidence time series, onset or peak time, or epidemic magnitude or
severity. They provide correlations between reported time series at different time lags and
are useful tools to detect strong signals of associations, however, despite their apparently
simple formulation, regression models “assume” strong statistical hypotheses based on the
shape of the data and the association [87]. These coarse methods cannot disentangle
intricate interaction mechanisms and, furthermore, the lack of mechanistic formulation of
transmission and interaction hinders quantification of interaction strength, and prevents
easily interpretable predictions that can be used for public health decision-making.

Due to the complex phenomena involved and many feedback interactions, mechanistic
models are needed to dissect the cause-and-effect of the different components [88] (Box 1).
The role of modeling is two-fold: first, mathematical modeling provides a common language
to integrate heterogeneous mechanisms and test competitive hypotheses. By doing so,
models contribute to building basic knowledge about infection processes. Second, modeling
enables assessment of potential intervention scenarios by predicting their impact.

For these reasons, public health interventions based on modeling of infectious diseases have
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become informative and effective. For example, in the UK, a transmission model fitted to a
vast range of ILI and influenza-surveillance data demonstrated that vaccinating children
against influenza will have the same protective effect on people over 65 years old, as
vaccinating those individuals [89]. This outcome is a consequence of the diminished
community transmission that results from reducing infections in children. Such an impact
would be impossible to identify without mechanistic models. Box 2 summarizes the benefits
of mathematical models.

Models of influenza interactions

Despite mounting evidence of influenza—bacteria interactions and the concurrent
increasing use of dynamic modeling to study infectious diseases in recent decades, influenza
interactions have rarely been modeled. Interestingly, previous literature reviews describing
evidence of interactions between influenza virus and other respiratory bacterial or viral
pathogens [3,26] neglected mathematical models which, despite their limited number,
provide insight into mechanisms of interaction and their consequences. We have
systematically reviewed the literature for models incorporating influenza with bacteria or
non-influenza viruses (Supplementary Section A).

Influenza-bacterial interaction

The only influenza—bacterium interaction that has been integrated into mathematical
modeling studies is the influenza—pneumococcus system, both within-host and at the
population level.

Several dynamic models of coinfection at the cellular level were proposed relatively
recently [90-92,93 ]. In a study combining modeling and empirical data from mice coinfected
with two different influenza viruses and two pneumococcus strains, Smith et al. assessed the
likelihood of different immunological interaction mechanisms [90]. They found a role of
macrophage dysfunction leading to an increase of bacterial titers and increased virus release
during coinfections [90]. However, their results suggest that coinfection-induced increase of
bacterial adherence and of infected cell death were not very likely. Shrestha et al. used an
immune-mediated model of the virus—bacterium interaction in the lungs to specifically
quantify interaction timing and intensity [91]. They assumed that the efficiency of alveolar
macrophages, which are a critical component of host immunity against bacterial infections,
was reduced by viral infection and tested the impact of inoculum size, time of bacterial
invasion after influenza infection, and the potential impact of antiviral administration. The
model predicted that enhanced susceptibility to invasion would be observed 4-6 days after
influenza infection, suggesting that early antiviral administration after influenza infection (<4
days) could prevent invasive pneumococcal disease. Smith & Smith modeled a nonlinear
initial dose threshold, below which bacteria (pneumococcus) declined and above which
bacteria increased. They showed that this threshold was dependent on the degree of virus-
induced depletion of alveolar macrophages, using data from mice experiments. Because
macrophage depletion varies through the course of influenza infection, this important
finding may explain why risk of bacterial invasion also changes over the course of infection,
with particularly low dose requirement in the first few days of infection [94]. In a follow up
study, the same authors analyzed published data from influenza-pneumococcus co-infected
mice treated with antiviral, antibiotic, or immune modulatory agents. They found that
antivirals are more efficient at preventing secondary infection when used in the first two
days of influenza infection; and also found an important benefit of immunotherapy,
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especially for low bacterial loads [92]. Lastly, in a within-host model, Boianelli and colleagues
investigated the efficacy of different oseltamivir treatment regimens in influenza-
pneumococcus coinfected individuals using parameters drawn from human and mouse
studies. They found that increasing the dose of oseltamivir, but not duration of treatment,
might increase both the antiviral and antibacterial efficacy [93].

There have been several population transmission models to assess influenza
interactions with bacteria, and test hypotheses regarding the main mechanisms [95-99].
Analysis of pneumococcal meningitis and viral respiratory infections in France highlighted
two important processes in colonized individuals: a virus-related increase in pneumococcal
pathogenicity and enhanced transmissibility of bacteria to others [95]. Analysis of bacterial
pneumonia from the USA concluded that influenza increased individual risk of pneumonia
[96,100]. Recently, in a simulation study, Arduin et al. used a flexible individual-based model
of influenza-bacterial interaction to assess the population consequences and associated
burden of a range of pneumococcus-influenza interaction mechanisms [101]. Population
dynamic models have also been used to test the public health impact of control measures
[97-99]. Different strategies of antibiotic use (as treatment or prophylaxis) and of vaccination
were assessed by modeling the dual transmission of pneumococcus and influenza [97].
When modeling a 1918-like pandemic, this model suggested that widespread antibiotic
treatment of individuals with pneumonia would significantly lower mortality, whereas
antibiotics in prophylaxis would effectively prevent pneumonia cases. A different model
evaluated the benefit of vaccinating the UK population against pneumococcus in the context
of pandemic influenza using different pandemic scenarios: 1918-like, 1957/68-like or 2009-
like [98]. Those results indicated that pneumococcal vaccination would have a major impact
only for pandemic with high case-fatality and secondary pneumococcal infections rates (e.g.
the 1918-like), with less influence in other scenarios.

Viral interaction

Influenza—influenza interactions predominate in models of two viruses, with limited
investigation of influenza—RSV interactions, and no models of other viruses.

Within-host, several models of multi-strain influenza infections were proposed [102-104],
especially examining the interval before the secondary infection. One model of RSV-
influenza interaction at the cellular level explored the hypothesis of the viruses interacting
through competition for resources within the cell [105]. This indirect competition was
sufficient to explain the observed rate of virus replication. The model also explored how the
speed of virus replication confers an advantage to the first infecting pathogen, and
determined the “head start” on infection that the slower-replicating virus would require to
maintain dominance.

Population models have been used extensively to examine the dynamics of influenza and
multi-strain influenza systems (for a review see [106]) although many fewer studies
examined multispecies systems. Because the influenza virus comprises two species, multiple
subtypes, and potentially numerous strains of each, at any given time many viruses may be
circulating, providing varying degrees of cross-protection after recovery, and sometimes
with complex dynamics of within-species strain replacement due to genetic drift or
reassortment. There is evidence of competition between strains, with some models
requiring short periods of heterologous immunity after infection to create the ladder-like
phylodynamic structure of influenza viruses [107], although recent studies could capture this
feature without this mechanism [55]. One comprehensive early model tested four
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mechanisms of interaction between influenza types using data from Tecumseh, Michigan,
but the data were insufficient to distinguish the mechanisms [108]. Influenza-influenza
models must also account for the complex immune history of hosts, where there is
mounting evidence that the timing of an individual’s influenza encounters, and especially the
first infection, shapes their future response [58-60]. The methods for modelling influenza-
influenza interactions should be extended into interactions with other viruses.

One model for pandemic influenza, in which coinfection with other respiratory pathogens
leads to enhanced influenza transmission, was proposed to explain the multiple waves of the
1918 influenza pandemic in the UK [109]. A recent example of influenza and RSV cross-
species analysis, in a climatically driven model, provided some evidence that RSV dominates
influenza, but the model was not explicitly fitted to data [110].

lllustration from a simple model

To demonstrate how both synergistic and competitive interactions can be modeled, we
used a simple transmission model and simulated the effect of interactions (Box 3, Figure 3,
and Supplementary section B). We show how these interactions at the individual level can
impact the epidemics at the population model. The “bacterial type” interaction firstly shows
an increase in bacterial prevalence when influenza infection increases bacterial transmission,
in a facilitative interaction. In a synergistic interaction, where coinfection increases
transmission of both influenza and bacteria, prevalence of bacteria increases, and the
epidemic of influenza has a quicker and higher peak. In the competitive interaction,
progressively decreasing the probability that a second pathogen can infect an already-
infected host causes the epidemic peaks to separate in time. It also decreases the peak size
of the outcompeted pathogen, without altering the number of people infected in total
(Figure 3).

Limits of the Current View

Historically, scientific and medical studies have tended to focus on host—pathogen
interactions in an independent manner, by studying each pathogen alone. It is clear that the
human host simultaneously encounters many microbes. Many respiratory viruses and
bacteria have been linked to influenza epidemiology, based on in vivo evidence from
individual and epidemiological studies. These non-neutral interactions, mostly facilitative for
bacteria and competitive for viruses, probably have individual- and population-level effects
on influenza pathogenicity, burden and potentially its epidemic profile. Furthermore, this is a
complex system in which each host—pathogen or pathogen—pathogen interaction
phenomenon may impact the others. Surprisingly however, such interactions remain poorly
studied and, in particular, very few modeling studies have addressed these questions.

Mathematical models are crucial to guide public health decision-makers, who, for ethical
or cost reasons, cannot conduct large-scale trials. Two examples of interventions based on
modeling results and mobilizing important public resources are pandemic preparedness
(stockpiling of antivirals, use of vaccine doses) [111] and national immunization programs
[19]. Neglecting the cocirculating pathogens— i.e., adopting influenza tunnel vision—and the
indirect impact of coinfections, may potentially affect the estimation of the risk associated
with influenza infection and, consequently, the accuracy of model predictions. Interaction
strength may also change from year-to-year, and depend on the circulating influenza strain.
For evaluation of interventions, this neglect can lead to overestimation of the impact — if
burden was measured without considering the changing landscape of coinfection in the
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population; or underestimation — if the effect of an intervention does not account for the
potentially decreased burden of an interacting pathogen as a result of diminished influenza
transmission. For all these reasons, we think that adopting a more holistic approach to
modeling of respiratory pathogens will improve their surveillance and the strategy to control
them.

Opportunities

Considering influenza virus in its ecological context and its interactions as a cause of its
associated morbidity and mortality should offer opportunities for prevention and treatment.
On one hand, models can assess available vaccines in optimal combinations and for better-
targeted populations. In addition to influenza vaccines that (partially) protect against virus
acquisition, antibacterial vaccines are also critical. Pneumococcal vaccines have good efficacy
against influenza-associated non-bacteremic pneumonias [112,113]. The 23-valent
pneumococcal polysaccharide vaccine significantly lowered the risk of invasive
pneumococcal disease and attributed mortality in the elderly [114]. Better understanding of
possible influenza—pneumococcus interactions and integrating those into transmission
models could potentially identify synergies between these vaccination programs, and
optimize the use of both vaccines.

In addition, optimization of antibiotic and antiviral prescriptions should be considered.
First, antibiotics have historically been used extensively to prevent secondary infections
[115,116]. However, increasing rates of antibiotic resistance worldwide led to policies to
mitigate antibiotic consumption, focusing particular attention on reducing antibiotic
prescriptions for viral infections. Second, neuraminidase inhibitors were found to prevent
some secondary bacterial pneumonias in animal models, human investigations and modeling
studies, beyond the window in which they directly impact the influenza viral load
[91,117,118]. Although antivirals may only modestly attenuate influenza symptoms, a body
of evidence suggests they could avoid severe and economically important outcomes of
influenza infection [118-121].

Accurate burden quantification is crucial to designing and implementing public health
interventions against influenza. Focusing efforts to better understand these interactions is
therefore critical, especially in the context of pandemic influenza, but also to plan for
seasonal epidemics, by forecasting the onset and peak times, and estimating the expected
burden. Deeper understanding of the ecology of the vast number of microorganisms that
can contribute is needed. To obtain it, further modeling work is needed, to test observed
and putative interactions and to determine their effects at the population level. From an
experimental perspective, models can be used to analyze available surveillance and
experimental data, generate hypotheses regarding interaction mechanisms at play in
transmission or infection, and test their likelihoods. Competing assumptions on the
biological interaction processes can be assessed and the strength of interactions can also be
estimated. From a public health viewpoint, these new models will help better estimate the
burden of influenza virus interactions in terms of morbidity and mortality, the cost-
effectiveness of interventions, and, critically, more accurately predict the real impact of
control measures.

Challenges

Integrating transmission and infection by multiple pathogens into mathematical models
11
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poses several challenges. From a methodological perspective, modeling several pathogens
with interrelated natural histories makes classical compartmental approaches more difficult.
Individual-based frameworks are better adapted for this task, e.g., this approach could be
used to investigate the effect of the interval between influenza infection and bacterial
acquisition, which reportedly affects the risk of bacterial invasion [30,122]. Individual-based
models are often more computationally intensive and can introduce new difficulties in terms
of parameter estimation, requiring the design of new methods. Recent developments in
statistical inference methods, like particle Markov chain Monte Carlo (pMCMC) or maximum
likelihood estimation via iterated filtering (MIF) [123,124], now enable modelers to jointly fit
complex population-based models to multiple types of data, thereby allowing more data,
and more diverse types of data to inform the model parameters.

Epidemiological data represent the second major challenge. To date, modeling studies
have been limited by the poor knowledge of respiratory viruses and bacteria circulating in
the community, especially because little is known about prevalence, incidence, at-risk
populations and even epidemic profiles in different populations. On an individual level, new
studies are required to assess the effect of coinfections, rather than ecological associations
from incidence data. Important features include: i) coinfection-induced alteration of
diseases’ natural histories, e.g. increased acquisition and severity risk, changes of infection
durations and generation times; ii) specific at risk-periods for secondary infection or invasion
of the coinfecting pathogen, or at-risk periods for severe outcomes; iii) at-risk populations,
as characterized by individuals’ age, comorbidities or behavioral risk factors.

For population-level data, in most countries surveillance of influenza acquisition is based
on networks of general practitioners who notify patients consulting for clinical symptoms of
ILI [125]. Surveillance-data streams based on syndromic surveillance [126], inpatient data
[127] and pathogen testing [128,129] should be combined, and linked at the patient level, to
better identify non-influenza infections, or anomalous epidemics that could signal
interaction. Improvement of data quality in patient records and detection of the biases
inherent in different types of surveillance data are critical to achieve this goal. The latter
could be reached by developing new microbiological tools, including new sampling kits able
to rapidly detect multiple pathogens for use during medical consultations.

Conclusion

We examined the epidemiological and biological evidence supporting influenza virus
interference and interaction with other pathogens. We highlighted opportunities to improve
knowledge and control of the virus, if we can move forward from the tunnel vision of single-
pathogen models. It is time to develop a more holistic approach to pathogen dynamics in
mathematical modeling, with novel methodological innovations, and further efforts in data
collection and surveillance. The motivation to do so lies in the real opportunity to improve
public health practices, and create better, more cost-effective interventions against
influenza.
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Box 1. Mathematical modeling definitions

It can be difficult to navigate studies using mathematical modelling for infectious diseases,
because modelers use their own lexicon, and words depart from their colloquial meanings.
Multiple words can also be used to describe the same thing (reflecting the multi-disciplinary
roots of mathematical modeling).

Mathematical vs statistical models: a mathematical model (or transmission or mechanistic
model) is a mechanistic description by mathematical equations of how the number of
infected entities changes over time. Depending on the scale of the model, entities can be
cells, individuals, or groups of individuals (e.g. a household, a city). Statistical models do not
include a mechanistic link between quantities, but only rely on a functional relationship,
often in the form of a probability distribution.

Individual-based model vs compartmental models: Individual-based models (or agent-based
models) include a description of the properties of each of the individuals in the studied
population. In contrast, compartmental models group individuals with similar characteristics
together into the compartments, and look at relationship between these compartments. The
most famous compartmental in epidemiology is the SIR model, based on three
compartments, Susceptible-Infectious-Recovered, which is the basis of most existing models.
Compartmental models are easier to fit to data and interpret. Individual-based models are
more flexible when it is important to integrate a wide range of characteristics of the
population, but are comparatively slow to implement and run, and require good data on
each characteristic that is modeled.

Model fitting: Models are built around a structure (the mechanisms), which is modulated by
parameters which govern the rates of change between compartments, disease states,
behaviors, etc. Historically, parameters have been estimated using results from studies
published in the literature. In recent years, with the increased availability of epidemiological
data, modelers try whenever possible to fit the model to data (also called parameter
inference or calibration). For this they use algorithms that explore “parameter space” which
is the set of all possible values for parameters, and retain sets of parameters that explain the
observed data best. Fitting can be computationally intensive if the model includes many
parameters. More efficient fitting algorithms allow fitting of more complex models and thus

study of potentially more interaction mechanisms.
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Box 2. Benefits of Transmission Models

e Allow causal relationships to be drawn from the data by testing hypotheses regarding
interaction mechanisms:

— For example, using models to analyze the cellular dynamics observed in vivo in mouse
coinfection experiments it is possible to design models of hypothesized immunological
pathways and determine which most closely fits observed patterns [90].

e Accurately evaluate the influenza burden

—-> For example, for year-to-year influenza epidemics have a different estimated reporting
fraction. A model could be used to determine if coinfection or concurrent epidemics of other
viruses are the reason for an increased (or decreased) probability of reporting infection.

e Predict or project incidence of co-infections, including during pandemics

-> For example, fitting multi-pathogen models to respiratory virus surveillance data would
allow quantitative assessment of the hypothesis that during the 2009 pandemic influenza
affected the timing of rhinovirus, RSV and influenza by competition [63,74].

e Optimize prevention and control of influenza infections and their complications

-> For example, a model of influenza and pneumococcal pneumonia could determine
optimal target groups for pneumococcal vaccination, based on both the bacterial carriage
rates in each age group, and the expected influenza vaccination rates in those age groups.

o Estimate the costs and benefits of intervention strategies

—-> For example, a model based analysis of in vitro experimental data could allow
assessment of the impact of early antiviral or antibiotic treatment on probability of
pneumococcal invasion [91,92]. Combined with population it would be possible to assess the
impact on secondary bacterial infections.
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Box 3. A simple model of interaction

S LY,
21 .
‘ l,, ———> Ry Aa ,;,{24,,1""“,!!‘ L]
A?l f!v] : N N
A, By hy Iy Gy
| —_— C Ay = 8,0, (= ] <1 “]
2 1V, 2 2l n=0h(ytagray+y

The simple model described here allows testing of two interaction mechanisms: increased (or
decreased) infectiousness on coinfection, and decreased (or increased) probability of coinfection
occurring. These are the two most commonly suggested mechanisms, the first of the “bacterial
type” and the second of the “viral type” (Fig 3).

In the compartmental model figure above, all individuals start in the Susceptible (S) class, and
move to the Infectious classes when they are infected by either pathogen 1 (/;) or 2 (/).

Infected (and infectious) compartments are shown in color, where red is infectious with pathogen
1, blue marks infectious with pathogen 2, and infected and infectious with both pathogens in
purple. Infection rates are given by the four forces of infection (A;, A, Ay, Az;). After being infected
by one pathogen, individuals can either be coinfected by the other pathogen and move to the
coinfection compartments in purple (/;; or I5;), or they can recover at rates y and move to the
Recovered compartments (R; and R;,). Coinfected individuals (/;, and I»;) recover and remain in the
doubly recovered compartments, R;, and R»;. Individuals in R; or R, are subject to force of
infection A, or A; respectively, i.e. of the pathogen they have not yet had. On infection with the
other pathogen, they move to the consecutive infection compartment (C;, or C,;). After recovery,
those individuals move to the doubly recovered compartments (R;, and R;;).

Parameters B; and 8, are the baseline transmissibility of pathogen 1 and 2 respectively. There are
four interaction parameters modulating the pathogen’s transmissibility: o; and o, are the change
in infectiousness of coinfected classes, where a value less than 1 makes the coinfected class less
infectious, and a value greater than 1 means coinfected individuals are more infectious.
Parameters &; and 6, alter the probability of acquisition of a second infection following a first
infection, where a value less than 1 makes coinfection less likely, and a value above 1 makes it
more likely.

Computer code generating these trajectories is given in Supplementary File S1.
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Table 1. Bacteria whose colonization or Infection course may be affected by interaction with

influenza.
Bacterial Study Effect lllustrative publications
species system
S. Animal  Synergistic/Facilitating Smith 2013 [90]; Wolf 2014 [130]; Siegel 2014 [131];
pneumoniae McCullers 2010 [132]; Ghoneim 2013 [31]; Peltola 2006
[133]; Walters 2016 [134]; Nakamura 2011 [135];
Human  Synergistic/Facilitating Walter 2010 [136]; Nelson 2012 [137]; Opatowski 2013
[95]; Shrestha 2013 [100]; Weinberger 2013 [86] ; Jansen
2008 [138]; Kuster 2011 [139]; Nicoli 2013 [85]; Ampofo
2008 [140]; Grabowska 2006 [141]; Murdoch 2008 [142];
Edwards 2011 [143]; Weinberger 2014 [144]; Grijalva 2014
[145];
Neutral / Unclear Kim et al 1996 [44]; Watson 2006 [45]; Toschke 2008 [46];
Zhou 2012 [146]; Damasio 2015 [147]; Hendricks 2017
[148]
S. aureus Invitro  Synergistic/Facilitating Niemann 2012 [149]; Davison 1982 [150]; Tashiro 1987
and [36]; Zhang 1996 [151]; Chertow 2016 [152]; Sun 2014 [47];
animal Braun 2007 [34]; Iverson 2011 [153]; Robinson 2013 [154]
Human  Synergistic/Facilitating Sherertz 1996 [155] ; Hageman 2006 [156]; Finelli 2008
[157]; Reed 2009 [158]
Neutral Kobayashi 2013 [159]
H. influenzae Animal  Synergistic/Facilitating Lee 2010 [48]; Michaels 1977 [160]; Bakaletz 1988 [161];
Francis 1945 [162]
Human  Synergistic/Facilitating Morens 2008 [163]
N. Invitro  Synergistic/Facilitating Rameix-Welti 2009 [50]; Loh 2013 [33]
meningitidis  and Neutral Read 1999 [164]
Animal
Human  Synergistic/Facilitating Cartwright 1991 [165]; Hubert 1992 [49]; Jacobs 2014
[166]; Brundage 2006 [167]; Jansen 2008 [138]; Jacobs
2014 [166]; Makras 2001 [168]
M. Animal  Synergistic/Facilitating Florido 2015 [169]; Florido 2013[52]; Volkert 1947 [170];
tuberculosis Redford 2014 [171]
Human  Synergistic/Facilitating Walaza 2015 [172]; Oei 2012[173]; Noymer 2011 [174];
Noymer 2009 [175]; Zurcher 2016 [176]
Neutral Roth 2013[177]
S. pyogenes  Animal  Synergistic/Facilitating Klonoski 2014 [178]; Okamoto 2003 [179]; Okamoto 2004
[180]; Hafez 2010 [181]
Human  Synergistic/Facilitating Scaber 2011 [182]; Zakikhany 2011 [104]; Tasher 2011

[183]

Neutral

Tamayo 2016 [184]
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Table 2. Viruses that may be affected by interaction with influenza.

Virus Study Effect lllustrative publications
system
RSV Population Competitive  Anestad 2007 [185]; Anestad 2009 [186]; Casalegno 2010 [74];,
incidence Anestad 1987 [187]; Yang 2012 [76]; Nishimura 2005
[188],;Glezen 1980 [73]; Pascalis 2012 [80]; Yang 2015 [64]; van
Asten 2016 [189]; Meningher 2014 [190]; Velasco-Hernandez
2015 [110]
Neutral Navarro-Mari 2012 [65]
Coinfection Competitive  Greer 2009 [81]; Martin 2013 [191]
detection
Laboratory Competitive  Shinjoh 2000 [192]
investigation
Rhinovirus Population Competitive  Casalegno 2010 [63]; Casalegno 2010 [74], Pascalis 2012 [80];
incidence Linde 2009 [193]; Anestad and Nordbo [194]; Cowling 2012 [62];
Yang 2015 [64]
Neutral Yang 2012 [76] ; Navarro-Mari 2012 [65]; van Asten 2016 [189]
Coinfection Competitive  Tanner 2012 [195]; Mackay 2013 [196]; Nisi 2010 [83]; Greer 2009
detection [81]; Martin 2013 [191]
Laboratory Competitive  Pinky and Dobrovolny 2016 [105]
investigation
Influenza Population Competitive  van Asten 2016 [189]
incidence
Coinfection Competitive  Nisii 2010 [83]; Sonoguchi 1985 [53]
detection
Laboratory Competitive  Easton 2011 [197]; Laurie 2015 [54]
studies
HPIV Population Competitive  Yang 2012 [64]; Anestad 1987 [187] ;Yang 2015 [64]
incidence
Neutral Mak 2012 [75]
Coinfection Competitive  Pascalis 2012 [80]
detection
Neutral Murphy 1975 [82]; Nisii 2010 [83]; Greer 2009 [81]; Martin 2013
[191]
Laboratory Synergistic/  Goto 2016 [198]
investigation  Facilitating
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Fig 1. Influenza interactions with other pathogens occur within-host or at the population level.
Each interaction could either inhibit or enhance coinfection, depending on the combination of
pathogens. A) Cellular level interactions: 1. direct interactions between viral products; 2. altered
receptor presentation; 3. cell damage, e.g. its surface receptors; 4. modification of release of
immune-system mediators; 5. competition for host resources among influenza and other pathogens.
B) Host-level interactions: 1. change of transmissibility due to symptoms; 2. individual variation in
commensal microbiota; 3. effect of symptomatic responses to infection; 4. tissue damage, e.g. in the
nasopharynx or lung; 5. competition for host resources, e.g. target cells for infection; 6. immune-cell-
mediated interaction; 7. immune signaling-mediated interaction; 8. antibody-mediated interaction.
C) Population-level interaction: 1. behavioral responses to disease; 2. medication use; 3. vaccination
behavior.
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Fig 2. Cycle of factors affected by non-neutral interactions at the individual level and their impact
on influenza surveillance, treatment, prevention and control.

Factors that affect coinfection on an individual scale can feed forward to an effect on population
surveillance through their effects on the reporting of infection. Decisions on public health
interventions are made in response to population-level data. These interventions then take effect at
the individual level, to give a feedback loop both generated and impacted by effects of coinfection.
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Fig 3. Example model outputs showing effect of synergistic and competitive interaction. Box 3 gives
details on the model that produces these epidemic trajectories. A) In the baseline enhancing
scenario, an endemic bacterial pathogen (blue) occurs at 5% prevalence. An influenza epidemic
occurs with no interaction, and the bacterial prevalence does not change. If the presence of influenza
coinfection increases bacterial transmissibility by 4 fold (o; = 4) then there is a transient rise in
bacterial prevalence. If there is also an increase in influenza transmissibility during coinfection (o; = 4
and g, = 2) then there is also a higher and earlier influenza peak, as a result of coinfection. B) In the
baseline competition scenario, the second epidemic pathogen is introduced later than influenza. The
two pathogens have the same transmission characteristics (same y, same B). If there is only a 50%
chance of infection with pathogen 2 when individuals are infected with pathogen 1 (§; = 0.5) then
the epidemic trajectory of pathogen 2 is lower and later. If competition is even stronger (§; = 0.1) so
there is a 90% reduction in chance of coinfection, the profile of pathogen 2 is even further separated
from pathogen 1. Computer code generating these trajectories is given in Supplementary File S1.
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