997 research outputs found

    Sleptons without Hadrons

    Get PDF
    Multilepton searches for electroweakino and slepton pair production at hadron colliders remain some of the best means to test weak-scale supersymmetry. Searches at the CERN Large Hadron Collider, however, are limited by large diboson and top quark pair backgrounds, despite the application of traditional, central jet vetoes. In this context, we report the impact of introducing dynamic jet vetoes in searches for colorless superpartners. As a representative scenario, we consider the Drell-Yan production of a pair of right-handed smuons decaying into a dimuon system accompanied with missing transverse energy. As an exploratory step, we consider several global and local measures of the leptonic and hadronic activity to construct the veto. In most all cases, we find that employing a dynamic jet veto improves the sensitivity, independently of the integrated luminosity. The inclusion of non-perturbative multiple particle interactions and next-to-leading order jet merging does not alter this picture. Directions for further improvements are discussed.Comment: 18 pages; 7 figures; additional discussions added; journal version; results unchange

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Microscopic Theory for Coupled Atomistic Magnetization and Lattice Dynamics

    Get PDF
    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known inter-atomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double anti-ferromagnetic materials, as well as, charge density waves induced by a non-uniform spin structure are given. In the final parts, a set of coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and damped driven mechanical oscillator for the ...Comment: 22 pages, including 7 pages of Appendix and references, 6 figure

    Magnetic phase diagrams from non-collinear canonical band theory

    Get PDF
    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of γ-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Atomistic spin dynamic method with both damping and moment of inertia effects included from first principles

    Full text link
    We consider spin dynamics for implementation in an atomistic framework and we address the feasibility of capturing processes in the femtosecond regime by inclusion of moment of inertia. In the spirit of an {\it s-d} -like interaction between the magnetization and electron spin, we derive a generalized equation of motion for the magnetization dynamics in the semi-classical limit, which is non-local in both space and time. Using this result we retain a generalized Landau-Lifshitz-Gilbert equation, also including the moment of inertia, and demonstrate how the exchange interaction, damping, and moment of inertia, all can be calculated from first principles.Comment: 5 pages, 1 figur
    corecore