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A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and
bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange
splitting uniquely determine the electronic bands. In this way, we are able to construct phase diagrams of
magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be
canonical in origin, in particular, that of �-Fe. In this approach, the determination of magnetic stability results
solely from changes in kinetic energy due to spin hybridization, and on this basis we are able to analyze the
microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets.
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I. INTRODUCTION

Structural trends in the Periodic Table and their micro-
scopic origin are now very well understood; in contrast, the
situation for magnetic order is not so clear. This can be at-
tributed both to the fact that only a subset of the Periodic
Table is magnetic in the three dimensional solid—the Fe
group and rare earths—and the much greater degree of free-
dom of magnetic ordering. Indeed, within the transition
metal block �with the exception of Mn�, all elements are
found either as fcc, hcp, or bcc lattices, whereas a wealth of
non-collinear magnetic structures may be found. For the
transition metals near the center of the series, one typically
finds antiferromagnetic �AFM� structures, while near the
ends, ferromagnetism is favored. In between, one has several
metals—�-Fe �fcc Fe�, bcc and fcc Mn—for which non-
collinear structures can be found.1 On the other hand, the late
rare earth group elements are non-collinear, while in the
middle of the series, one has ferromagnetic Gd.2

This richness of magnetic structures means that most the-
oretical approaches focus on specific materials, and only a
few attempts have been made to determine conditions
wherein one places possible magnetic structures in some
general scheme. A notable early attempt along such lines was
the work of Pettifor3 who, on a similar basis to Friedel’s
theory for the stability of crystal structures, formulated a
magnetic phase diagram in terms of the Stoner parameter to
the bandwidth I /W and the d-band occupation number. In
this theory, the ferromagnetic and disordered local moment
structures were considered, and the phase diagram revealed a
simple argument as to why bcc Fe is a good local moment
system, but fcc Co and fcc Ni are not. Heine and Samson,4

again using arguments based on generalized Stoner criteria,
constructed a similar phase diagram but included also the
AFM structure. They further made actual calculations of the
generalized Stoner I within the tight binding approximation,
showing how �-Fe was placed at the crossing point of the
AFM and ferromagnetic �FM� stability criteria. Hirai,5 on the
basis of an approximation to Hartree-Fock theory, calculated

the energy of FM, AFM, and helical spin spiral structures as
a function of an intra-atomic parameter and the d-band oc-
cupation number. The resulting phase diagram showed the
appearance of a region of helical stability in between regions
of FM and AFM stability.

Recently, an attempt was made to reexamine the issue of
non-collinear stability on the basis of first principles
calculations.6 Interestingly, it was found that materials col-
linear at their equilibrium moment were non-collinear for
smaller �local� moments, induced either by pressure or a
fixed spin moment procedure. On this basis, it was suggested
both that any magnetic material could be made non-collinear
under appropriate conditions and also that the primary factor
governing the instability of the FM state toward a non-
collinear one was the hybridization of crossing spin-up and
spin-down bands at the Fermi level. The former suggestion
is, at first sight, somewhat at variance with earlier work,
particularly that of Hirai, where the occurrence of non-
collinear magnetism was seen to be directly related to d-band
filling.

It has been shown in the past that Andersen’s canonical
d-band theory gives a good qualitative account of crystal
stability in the transition metal block and rare earths,7,8 even
including the impact of collinear magnetism.9 In this theory,
the canonical d bands are determined only by the symmetry
of the crystal lattice. Thus, by varying the d-band filling one
obtains, from differences in the band energy between various
crystal structures, the observed trends in crystal stability, i.e.,
hcp→bcc→hcp→ fcc in a non-magnetic d row. In the much
more complicated case of non-collinear magnetism, such a
parameter-free and conceptually simple theory which never-
theless yields the correct trends would be even more useful,
particularly in light of the above discussion.

In the present work, we will show how canonical d-band
theory, suitably generalized to deal with non-collinear mag-
netism, may be used to construct phase diagrams of magnetic
order as well as explore their precise microscopic, i.e., band
structure origins. In a way completely analogous to the usual
canonical theory, the electronic bands are determined only by
the crystal and magnetic symmetry and the exchange split-
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ting. The resulting phase diagrams can be considered as a
“magnetic map of the d band.” With this in hand, we shall be
able to clarify the role of spin hybridization in non-collinear
stability and the apparent contradiction between Refs. 5 and
6.

It should be noted that a d-band only theory of non-
collinear magnetism might be expected to be useful, given
that in the Fe group the magnetic moment is dominated by
electrons of d character. However, the effect of sd hybridiza-
tion will, for instance, change the position of specific d
bands, and the physics of this will be absent in this approach.
Thus, a non-collinear canonical d-band theory may also be
used to judge the impact of sd hybridization on the formation
of non-collinear magnetic structures.

The remainder of this paper is structured as follows. In
Sec. II, we describe canonical band theory and its generali-
zation to deal with non-collinear magnetism, followed in
Sec. III by details pertinent to its implementation. In Sec. IV,
we present non-collinear magnetic phase diagrams for the fcc
and bcc lattices, and in Sec. V we discuss the microscopic
reasons for the structure of the phase diagrams. Finally, in
Sec. VI we conclude.

II. NON-COLLINEAR CANONICAL BAND THEORY

We begin by briefly summarizing the canonical band
theory and its origins; for simplicity of presentation, we will
consider only one atom in the crystal basis. Within the linear
muffin tin orbital �LMTO� or Korringa-Kohn-Rostocker
electronic structure method in the atomic sphere approxima-
tion �ASA�, the electronic bands are given by the secular
equation

�P�E� − S�k��ai
k = 0, �1�

where k is a reciprocal lattice vector in the first Brillouin
zone �BZ� and i a band index. In this equation, the potential
function P�E� is a diagonal matrix only dependent on the l
quantum number and determined by the choice of atomic
species, while the structure matrix S�k� depends only on the
symmetry of the crystal.

Neglecting the off-diagonal l�l blocks of the structure ma-
trix, which amounts to neglecting all hybridization effects
between different angular momentum channels, leads to a set
of pure l canonical bands given by Pli=Sli�k� unique for each
crystal structure. In cases where the physics of the d band is
expected to play a leading role, one can further neglect all
but the l�= l=2 block, and by approximating the potential
function by P= �E−C� / ��s2�, one finds a simple eigenvalue
problem for the canonical d bands,

���i
k − C�/��s2�1 − S�k��ai

k = 0, �2�

where 1� i�5 is a d-band index. Here, C is an irrelevant
parameter which simply sets the origin of the energy axis,
while �s2 transforms the canonical eigenvalues to a physical
energy scale �� is the intrinsic band mass and s the Wigner-
Seitz radius�. This latter parameter thus sets the d-band
width. Since energy differences are unaffected by the choice
of this parameter, we have, effectively, a parameter-free
theory.

To develop a non-collinear magnetic generalization, one
must first specify a particular class of magnetic structures. It
is convenient to consider helical spin spiral structures since
these contain both the FM and AFM structures as limits. In a
helical spin spiral structure, the magnetization is given by

m�Rn� = �sin � cos�q · Rn�,sin � sin�q · Rn�,cos �� , �3�

with Rn a direct lattice vector and q a reciprocal lattice vec-
tor in the first BZ. The FM limit is found for q→0 and AFM
limits for �=� /2 and certain high symmetry points on the
BZ boundary. For instance, the X �H� and L �P� points in the
fcc �bcc� BZ generate antiferromagnetic structures in the
�001� and �111� directions, respectively.

In general, structures given by Eq. �3� will be incommen-
surate with the underlying lattice. They will, however, be
invariant under a lattice translation Rn and a rotation about
the spiral axis by q ·Rn, symmetry operations which form the
so called spin-space group.10 This leads to a generalized
Bloch theorem and an LMTO-ASA secular equation as
before,11

�P�E� − S�k,q��ai
k = 0, �4�

where the potential function P�E� and eigenvector ai
k are in

the local frame of the spin spiral, that is, in the frame which
at site Rn is rotated with respect to the global reference frame
by the polar angles � and �=q ·Rn. The potential function
will thus be diagonal in spin space, while the structure matrix
S�k ,q� given by

S�k,q� = �S+ − S− cos � S− sin �

S− sin � S+ + S− cos �
� , �5�

with

Sm�m
± =

1

2
�Sm�m

k+q/2 ± Sm�m
k−q/2� , �6�

has off-diagonal elements in spin space. As before, we now
neglect all but the l�= l=2 blocks in Eq. �4�, and with the
linear approximation for the potential function, which now
becomes

P = �C − E�/��s2�1 + �− 	/2 0

0 	/2
� �7�

�	 is the exchange splitting�, one finds an eigenvalue prob-
lem for the canonical bands of the spin spiral given by

���i
k − C�/��s2�1 − �S�k� + ���ai

k = 0. �8�

Just as Eq. �2� determines a set of bands unique for each
crystal symmetry, so does Eq. �8� for each symmetry of the
spin-space group and a given exchange splitting. The eigen-
vectors and eigenvalues of Eq. �8� readily yield the density
of states of each spin channel,

D
��� =
1

VBZ
	 dk���i

k − ��n
i
k , �9�

where n↑i
k �n↓i

k � is the sum of up �down� squared components
of the eigenvector ai

k. From this, the basic quantities of the
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theory can be derived; the electron number, magnetic mo-
ment, and one-electron energy, given by

n�EF,	� = 



	EF

d�D
��� , �10�

m�EF,	� = 	EF

d��D↑��� − D↓���� , �11�

e�EF,	� = 



	EF

d��D
��� . �12�

The natural parameters of the theory are thus the Fermi
level EF and the exchange splitting 	; however, the physical
parameters are the d-band filling and magnetic moment.
Equations �10� and �11� must be solved to yield EF�n ,m� and
	�n ,m�, and hence e(EF�n ,m� ,	�n ,m�)�e�n ,m�.

In this approach, there is, of course, no intrinsic force
causing the magnetization; it is instead imposed by setting
the exchange splitting to a fixed value which thus plays the
role of an external field. The energy contribution of this ex-
ternal field is included in the one-electron energy and so
must be subtracted from it. Implicit in the atomic sphere
approximation from which the canonical band theory is de-
rived is that the magnetization in each sphere is given by mẑ
and is parallel to the field—in our case the external
field—driving the exchange splitting. The field energy per
site is thus given by

Eext = − mBext. �13�

Since Bext=	 /2, we immediately find the kinetic energy of
the canonical bands as

T�n,m� = e�n,m� +
1

2
	m . �14�

To the canonical kinetic energy can then be added a Stoner
term modeling just the kind of intrinsic force that is missing,

E�n,m� = −
1

4
Im2 + T�n,m� , �15�

resulting in a canonical Stoner theory. At this stage, one can
see that there are a few choices for the physical variables of
the theory. A fixed spin approach can be taken by considering
different spin spirals for fixed values of n and m, while to
model the physics of the Fe-group magnets, the natural vari-
ables would be n and the Stoner I. On the other hand, to
model the rare earths, where the localized f electrons impose
an exchange field on the valence spd, the natural choice
would be n and the exchange splitting 	.

As in the non-magnetic canonical band theory, a number
of simple analytical results can be found for the non-
collinear canonical bands. In particular, we mention that the
center of gravity of each spin channel, defined as

C
 =

	
−�

�

d��D
���

	
−�

�

d�D
���
, �16�

may be shown from Eq. �8� to be given by

C
 = C + 

	

2
, �17�

which is the non-collinear generalization of the fact that the
center of gravity of a canonical band is zero. Of course, for
the collinear state, this is trivial since the bands are rigidly
shifted.

III. COMPUTATIONAL DETAILS

In order to solve Eqs. �8�–�12�, we use a Monkhorst-Pack
mesh with 18 910, 109 800, 216 000, 216 000, and 37 820
k-points in the irreducible Brillouin zone for the FM struc-
ture, and spirals along 
X, XW, WL, and LG, respectively.
For the bcc irreducible Brillouin zone, we use 5200, 28 830,
and 109 800 k points for the FM structure and spirals along

H and HP, respectively. The k integration is performed
using an eigenvalue broadening of 4.5 mRy. For the poten-
tial parameters which, for the canonical d-band theory, sim-
ply set the origin and scale of energy, we take C and 1/ ��s2�
from the corresponding values in non-magnetic fcc Fe. Since
1/ ��s2� changes with electron number, this choice does not
represent a physical scale �excepting near n=7.0�, only a
more convenient scale in comparison to the bare canonical
units. We should stress that energy differences at a given
band filling, our concern here, are unaffected by this choice.

In order to solve Eqs. �10� and �11�, we minimize the
function

f = �n��EF,	,q� − n�2 + �m��EF,	,q� − m�2. �18�

To facilitate this, it is convenient to precalculate the func-
tions n� and m� and also the corresponding one-electron en-
ergy function e��EF ,	 ,q� over the full range of EF and 	
and interpolate using cubic splines. By using an exponential
mesh for the spline end points, we find that, over the whole
range of EF and 	, the average error between the spline
interpolation and direct integration is in the sixth significant
figure, i.e., negligible. In this way, one can very rapidly mini-
mize Eq. �18�, whereas if n� and m� are repeatedly calculated
by solving Eq. �8� over the Brillouin zone, this would be a
very slow, and in fact impractical, procedure.

IV. CANONICAL PHASE DIAGRAMS

For the calculation of canonical phase diagrams, we have
chosen the variables to be the band filling n and moment m.
By doing so, we hope to arrive at an overall view of the role
of the band term in non-collinear stability. In order to mini-
mize the energy at each �n ,m�, a particular set of spin spirals
must be specified. One could, in principle, minimize with
respect to all q and � degrees of freedom in Eq. �3�; however,
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we have restricted ourselves to planar spin spirals, �=� /2 in
Eq. �3�, generated by q vectors along the 
XW and 
HP
lines of the fcc and bcc BZ’s, respectively. The choice of
planar spin spirals is convenient since, as was mentioned in
Sec. II, this parameter space includes both the FM and AFM
collinear limits as well as non-collinear states intermediate
between them. Furthermore, there are sufficient experimental
and theoretical data for a meaningful comparison with the
canonical phase diagrams even with this restriction. For
brevity, in the remainder of this paper, we shall refer to spin
spirals with the q vector along an AB symmetry line as AB
spin spirals.

In Figs. 1 and 2, it can be seen that, as expected, near half
filling of the d-band AFM structures are found, while for the
nearly fully occupied or empty d band, FM structure is
found. In both phase diagrams, it may be observed that the
region of FM stability is too small. For instance, in the fcc
phase diagram ferromagnetism becomes the stable solution
for n between 8.0 and 9.0 d electrons, whereas since fcc Co
is FM and �-Fe non-collinear, the boundary should lie be-
tween n=7.0 and 8.0.

We now consider the fcc phase diagram in more detail
and its relation to known examples of non-collinearity. We

first discuss these examples. Recently, Ni, Co, and Mn were
found to form spin spirals along the 
X direction when their
moments were reduced to 0.2�B �q
X= �0,0 ,0.24��, 0.8�B
�q
X= �0,0 ,0.5��, and 1.0�B �q
X= �0,0 ,0.84��,
respectively,6 with the spin spiral vector indicated in paren-
theses �we set 2� /a=1�. The most well known example of
non-collinearity is, however, �-Fe. This is realized experi-
mentally as precipitates grown in Cu and a spin spiral struc-
ture with qXW��0.0,0.2,1� is observed.12 Theoretically it is
found that the magnetism is sensitive to all details of the
calculation such as the electronic structure method, choice of
exchange correlation functional, and lattice parameter. Re-
cently, it was pointed out that, to a large extent, all this can
be reduced to a dependence on the moment, which itself is
very sensitive to lattice parameter and details of the
calculation.13 With this in mind, we can give an approximate
overview of the theoretical picture in �-Fe by quoting what
happens as the moment is changed. At small moments of
�1.0�B, nearly degenerate spin spirals with q
X
��0.0,0.0,0.8� and qXW��0.0,0.2,1� are found, with the
latter having the lower energy. For moments of �2�B, a
deep minimum in the spin spiral energy at q
X
��0.0,0.0,0.5� is found. Finally, at moments of �2.5�B, the
FM structure is stabilized.

Most of these examples of non-collinearity can be found
in Fig. 1. In order to compare with the data discussed above,
the d electron number corresponding to each element must
be determined. One could use the d electron number from
self-consistent calculations—which yields for Fe, Co, and Ni
values of 6.6, 7.5, and 8.6, respectively—or simply take the
unhybridized d electron numbers of 7, 8, and 9. Since we are
not expecting quantitative results, this perhaps does not mat-
ter much, and so we will simply take d electron numbers
near the unhybridized integer values to correspond to the
elements.

At a d electron number of 8.8, one finds ferromagnetism
for a moment of 1.1�B, while at m=0.2�B a spin spiral with
q
X= �0,0 ,0.28�, a behavior strikingly similar to that seen
for fcc Ni.6 These points are indicated in Fig. 1, while the
spin spiral spectrums are shown in panels �a� and �b� of Fig.
3. On the other hand, for a d electron number of 8.0, one
finds for m=0.8�B a spin spiral with q
X= �0,0 ,0.46�, simi-
lar to the behavior of fcc Co.6 This point is indicated in Fig.
1, with the spin spiral spectrum shown in panel �c� of Fig. 3.
For a d electron number of 7.0 and a moment of 1.8�B �again
indicated by a cross in Fig. 1�, one finds a deep energy mini-
mum at q
X= �0,0 ,0.60�, which is similar to the intermediate
moment spin spiral found in self-consistent calculations of
�-Fe �see panel �d� Fig. 3 for the corresponding spin spiral
spectrum�. Interestingly, in Fig. 1 at band fillings n
=6.25–7.0 and moments up to �0.9�B �this is indicated by
the boundary line in the corresponding region of Fig. 1�, a
small region of stability of XW spin spirals and the W point
is found. A closer look at the spin spiral spectrum for n
=6.5 and m=0.8 �see panel �f� of Fig. 3� reveals a behavior
very similar to that found for low moment �-Fe in that one
has nearly degenerate spiral minima at q
X= �0,0 ,0.8� and
qXW= �0,0.32,1�, with the latter having a marginally lower
energy. It has been noted in the past4,5 that, in magnetic

FIG. 1. �Color online� Canonical phase diagram for 
XW spin
spirals in the fcc structure. Indicated by symbols are the regions of
stability of different spiral structures. The lines beginning at
�n ,m�= �7.2,0.0� and �n ,m�= �2.0,0.0� indicate the stability of the
spiral q
X= �0,0 ,0.5�. The smaller size X’s indicate points dis-
cussed in the text.

FIG. 2. �Color online� Canonical phase diagram for 
HP spin
spirals in the bcc structure. Indicated by symbols are the regions of
stability of different spiral structures. The line beginning at
�n ,m�= �5.8,0.0� indicates the stability of the spiral q
X

= �0,0 ,0.5�. X’s indicate points discussed in the text.
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phase diagrams of the fcc lattice, �-Fe appears at the cross-
ing point of AFM to FM behavior. Here, we see a more
detailed picture emerging, indicating that the non-collinear
magnetism of �-Fe is essentially canonical in origin. A num-
ber of obvious defects of the phase diagram in Fig. 1 must be
pointed out. As has been mentioned, the region of stability of
the FM phase is too small. A consequence of this is that a
high-spin FM state is not found for electron numbers n
=7.0–8.5. Finally, missing in Fig. 1 is the 
X spiral found
for Mn at a moment of 1.0�B.6

For the bcc lattice a similar situation holds, i.e., several
examples of non-collinear magnetism from electronic struc-
ture calculations can be found, and hence are canonical in
origin, but not all. Again, we briefly review the pertinent
facts. Firstly, unlike fcc Co, bcc Co does not form a spin
spiral except for very small moments, of the order of
0.15�B.6 On the other hand bcc Ni, at a moment of 0.2�B,
was found to form a spin spiral with q
X= �0,0 ,0.18�, and Fe
and Mn for compressed volumes were found to form spin
spirals with q
X= �0,0 ,0.03� and q
X= �0,0 ,0.20�,
respectively.6 Turning to the canonical bcc phase diagram,
one finds that for a d electron number of 9.0 �Ni�, one has
ferromagnetism for m=0.75�B, while for a moment of
0.2�B, one finds a spin spiral with q
X= �0,0 ,0.36�. More-
over, for n=8.0 �Co�, there is a FM solution for m=1.6�B
and this is stable down to the smallest moments �m
=0.05�B�, although there several almost degenerate spin spi-
ral minima along the 
H and HP symmetry lines. At a d
electron number of 7.3 �Fe�, one for m=0.2�B finds a spin
spiral with q
X= �0,0 ,0.06�, while for higher moments, m
=1.7�B, a FM solution is found. All this is strikingly similar
to the results from electronic structure calculations.6 A fur-
ther interesting observation is that, as it should be, the FM
phase is more resistant to spin spiral formation for the bcc
lattice as compared to the fcc. Also, the form of the boundary
is different; near band fillings of n=6.0, the stability of the
FM state is increased for smaller moments. This actually

corresponds to what is seen in electronic structure
calculations;1 fcc Mn is AFM, while bcc Mn has a low-spin
FM state which, as the moment is increased by increasing
volume, leads through a non-collinear phase to a high-spin
AFM state.1 On the other hand, the low-spin FM state near
n=6.0 is not found in Fig. 2; it is unstable with respect to
small q spin spirals. Furthermore, between d electron num-
bers of 6.0 and 7.0, one can note a phase of non-collinear
stability for high moments, clearly an artifact of the canoni-
cal theory.

We now discuss some of the more general features of the
canonical phase diagrams. Two things stand clear from the
preceding discussion. Firstly, in agreement with Ref. 6, one
cannot consider non-collinearity to be an “exotic” feature of
itinerant magnetic materials. In these phase diagrams, on the
contrary, for large ranges of d electron numbers and mo-
ments, non-collinear structures are more stable than collinear
ones. However, rather than this non-collinearity being arbi-
trary, in the sense of Ref. 6 that any material could be made
non-collinear under appropriate conditions, it is deeply con-
nected to the d-band electron number. It is not quite the case
that regions of non-collinear stability are always to be found
between those of the AFM and FM structures, as was found
in the work of Hirai.5 The low-spin incursion of 
H structure
into ferromagnetism for n�8.5 �low-spin bcc Ni� and the
appearance of the XW phase at the boundary of the AFM-1
and 
X phases �low-spin �−Fe� are counterexamples to this
general trend. Other examples can be seen in Figs. 1 and 2.
Finally, the phase diagrams do help give a different perspec-
tive on the small moment non-collinearity in fcc Ni and fcc
Co. In these cases, it can be seen that reducing the moment
has precisely the same effect as reducing the d electron num-
ber, simply bringing the material into the 
X region of sta-
bility.

V. ROLE OF SPIN HYBRIDIZATION

The fact that several features of the magnetic phase dia-
grams shown in the previous section correspond, qualita-
tively, to features seen either in experiment or electronic
structure calculations for fixed spin moment makes it worth-
while to consider their microscopic origin. In the canonical
approach there is, of course, no intrinsic contribution from
the Coulomb energy of the electrons. The electron-electron
interaction is instead bound up in the on-site Stoner term as
the Stoner parameter to the d-band width I /W, which, in a
fixed spin procedure, drops out of the energy expression �see
Eq. �15��. Since there is also no hybridization between dif-
ferent l channels, the determination of magnetic structure is
driven solely by spin hybridization, that is, hybridization ef-
fects between opposite spin channels of the d band.

With this in mind, the key question to be answered is how
spin hybridization brings about the observed trends in mag-
netic order. This is interesting since the role of spin hybrid-
ization in non-collinear magnetism has been emphasized re-
cently in Ref. 6 and is also at the root of the well known
collinear AFM→FM trend.1 We shall consider the fcc lattice
as an example and specifically the change in magnetic order
from AFM-1→
X→FM as the d electron number is in-

FIG. 3. Canonical spin spiral spectra for the symmetry path

XWL
 in the fcc Brillouin zone. Shown are spectra for �a� n
=8.8, m=1.1, �b� n=8.8, m=0.2, �c� n=8.0, m=0.8, �d� n=7.0, m
=1.8, �e� n=5.0, m=3.3, and �f� the region around the X point for
n=6.5, m=0.8. The top scale refers to graphs �a�–�e�, and the bot-
tom right to graph �f�.
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creased from half-filling �see Fig. 1�. In Fig. 4, we show the
canonical density of states �DOS� for the AFM-1 structure
�panel �a�� and the q
X= �0,0 ,0.5� spin spiral �panel �b��. In
each case, the broken lines indicate the corresponding FM
DOS. The exchange splitting is set to give m=3.3 at n=5.0
for the AFM-1 structure and m=1.8 at n=7.0 for the 
X spin
spiral. The latter point in the phase diagram shows a behav-
ior similar to the intermediate moment spin spiral found in
�-Fe �see panel �d� of Fig. 3�. What can clearly be seen is the
creation of hybridization gaps in the DOS, which, for the
AFM-1 structure consists of a single large gap at the center
of the band and for the 
X structure several gaps, but prin-
cipally, two at energies of +0.1 and −0.05. This is brought
out clearly in the inset graphs of Fig. 4 which show the
difference between the AFM-1 or spiral DOS and that of the
corresponding FM DOS, with the gaps indicated by arrows.

The effect of such hybridization gaps upon magnetic sta-
bility depends crucially on their relation with the Fermi en-
ergy. When the Fermi energy lies in a hybridization gap, the
non-collinear �or AFM� structure will be energetically favor-
able as spectral weight in the majority �minority� channel is
shifted to lower �higher� energies. On the other hand, if the
Fermi level lies in either side of the hybridization gap, it will
be in the “hybridization peak” and consequently the structure
which gives rise to this DOS will be energetically unfavor-
able. It should be pointed out that such conclusions hold true
also when one considers not the one-electron energy but the
kinetic energy, which is the physically relevant quantity.

Given that the AFM-1 structure places a hybridization gap
at E=0, while the q
X= �0,0 ,0.5� structure places the gaps

off center at E�−0.05 and E�0.1, an explanation of the
AFM-1→
X→FM trend can be found. At half filling, the
Fermi level is in the center of the d band and hence placed in
the very strong pseudogap evident in Fig. 4. The AFM-1
structure is thus stabilized. However, as the band filling is
increased, the Fermi level enters the minority “upper hybrid-
ization peak” of the AFM-1 DOS. The kinetic energy can
then be lowered by a change in structure to the 
X spin spiral
since, although it has a weaker hybridization gap, it is placed
off center at E�0.1, and for higher band fillings this is
where the Fermi energy lies. The band fillings corresponding
to the gap in panel �b� of Fig. 4 are centered around n=7.0
�in fact, n=6.75–8.50�, which confirms that this is the
mechanism which stabilizes the non-collinear order found in
intermediate moment �-Fe. As n increases further, the Fermi
level will continuously be entering the upper hybridization
peak of the DOS, driving the spiral q vector toward the 

point. In this way, for sufficiently large n, FM order is finally
stabilized.

It is important to note that the pronounced hybridization
gaps found in the spiral DOS for q vectors far from the 

point are not preserved as q→0 or as 	→0. In Fig. 5, we
show the DOS of the q
X= �0,0 ,0.3� spiral, with the ex-
change splitting set to give a moment of 0.2�B at n=8.8. The
latter point in the phase diagram shows a behavior similar to
that of fixed low moment fcc Ni �see panel �b� Fig. 3, this
point is also marked on the fcc phase diagram Fig. 1�. Al-
though there are no clear hybridization gaps, the quantity
D
X���−DFM��� �shown in the inset� reveals a behavior very
similar to that seen in Fig. 4, although with considerably
more structure. An inspection of the band structure, see Fig.
6, corresponding to the DOS presented in Figs. 4�a� and 5
reveals clearly the change that takes place as spin hybridiza-
tion becomes weaker. In the former case, all bands shift sig-
nificantly in energy, leading to a hybridization gap on an
energy scale of the d-band width. In contrast, the band struc-
ture of the q
X= �0,0 ,0.3� spiral considered in Fig. 5 shows
recognizably the topology of the FM state, the most signifi-
cant difference being level repulsions at intersections of
spin-up and spin-down bands. This leads to local hybridiza-
tion gaps on an energy scale much smaller than that of the
d-band width, the presence of which is masked in the total
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FIG. 4. �Color online� Canonical density of states �DOS� for �a�
AFM-1 and �b� spin spiral q
X= �0,0 ,0.5� structures. Broken line
indicates the FM DOS for the same exchange splitting. In each
case, the inset graph shows the difference between the AFM-1 or
spiral DOS and the FM DOS. Vertical lines indicate a region where
the total AFM-1 or spiral DOS is lower than the FM DOS.
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FIG. 5. �Color online� Canonical density of states �DOS� for the
spin spiral q
X= �0,0 ,0.3� structure and, indicated by the broken
lines, the FM DOS with identical exchange splitting. The inset
shows the difference between the q
X= �0,0 ,0.3� and FM DOS.
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DOS by states not involved in the hybridization.
Although this explanation is of a specific trend, it may

readily be seen that the basic concept is more generally ap-
plicable, simply because such hybridization gaps will always
be present in non-collinear, or AFM, structures. Trends in
magnetic order thus have their microscopic origin in the re-
lationship between the placement of spin hybridization gaps
and the Fermi level. These gaps, however, exist on a variety
of energy scales depending on the strength of the spin hy-
bridization. The explanation presented here thus interpolates
between the well known explanation for the stability of AFM
structures at half filling1 and the more recent suggestion that
it is local hybridization gaps at the Fermi level which play an
important role in non-collinear magnetism.6

VI. CONCLUSIONS

In this work, we have presented a non-collinear generali-
zation of Andersen’s canonical d-band theory, which has
been used to generate phase diagrams of magnetic order for
the fcc and bcc lattices. In large regions of these phase dia-
grams, non-collinear order is stabilized, and we have identi-
fied several examples of what might be called canonical non-
collinear magnetism. These examples of non-collinearity are
stabilized simply by the spin hybridization of the canonical d
band. In particular, the q= �0,0 ,0.5� and q= �0,0.2,1.0� spin
spiral structures found in �-Fe are canonical, with the former
part of a general AFM→
X→FM trend which includes also
the low moment non-collinearity of fcc Co and Ni.

On the other hand, in some respects, the phase diagrams
do not agree with what is found in electronic structure cal-
culations. The most striking disagreement is that the region
of FM stability is too small in both the fcc and bcc phase
diagrams. Since in the canonical d-band approach we have
explicitly excluded sd hybridization, it is tempting to con-
clude that such hybridization, in fact, favors the stability of
the FM state over non-collinear states. This will be explored
in a future work.

We have further analyzed the microscopic driving forces
behind the structure of the canonical phase diagrams. In
agreement with Ref. 6, we find that hybridization gaps
brought about by spin mixing in the non-collinear, or AFM,
states are found to be crucial. However, they may occur on a
wide range of energy scales, from that of the d-band width to
an energy scale where it is only states near the Fermi level
which dominate. This is quite a natural conclusion since it
unites the suggestion of Ref. 6 with the well known physics
explaining the stability of AFM states near half filling.
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FIG. 6. Canonical band structure for the �a� high-spin AFM-1
and �b� low-spin q
X= �0,0 ,0.3� spin spiral structures. In each case,
the corresponding FM band structure is indicated by the broken
lines.
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