258 research outputs found
Consensus-based recommendations on priority activities to address acute kidney injury in children: A modified Delphi consensus statement
Importance: Increasing evidence indicates that acute kidney injury (AKI) occurs frequently in children and young adults and is associated with poor short-term and long-term outcomes. Guidance is required to focus efforts related to expansion of pediatric AKI knowledge.
Objective: To develop expert-driven pediatric specific recommendations on needed AKI research, education, practice, and advocacy.
Evidence Review: At the 26th Acute Disease Quality Initiative meeting conducted in November 2021 by 47 multiprofessional international experts in general pediatrics, nephrology, and critical care, the panel focused on 6 areas: (1) epidemiology; (2) diagnostics; (3) fluid overload; (4) kidney support therapies; (5) biology, pharmacology, and nutrition; and (6) education and advocacy. An objective scientific review and distillation of literature through September 2021 was performed of (1) epidemiology, (2) risk assessment and diagnosis, (3) fluid assessment, (4) kidney support and extracorporeal therapies, (5) pathobiology, nutrition, and pharmacology, and (6) education and advocacy. Using an established modified Delphi process based on existing data, workgroups derived consensus statements with recommendations.
Findings: The meeting developed 12 consensus statements and 29 research recommendations. Principal suggestions were to address gaps of knowledge by including data from varying socioeconomic groups, broadening definition of AKI phenotypes, adjudicating fluid balance by disease severity, integrating biopathology of child growth and development, and partnering with families and communities in AKI advocacy.
Conclusions and Relevance: Existing evidence across observational study supports further efforts to increase knowledge related to AKI in childhood. Significant gaps of knowledge may be addressed by focused efforts
Fermion loops, loop cancellation and density correlations in two dimensional Fermi systems
We derive explicit results for fermion loops with an arbitrary number of
density vertices in two dimensions at zero temperature. The 3-loop is an
elementary function of the three external momenta and frequencies, and the
N-loop can be expressed as a linear combination of 3-loops with coefficients
that are rational functions of momenta and frequencies. We show that the
divergencies of single loops for low energy and small momenta cancel each other
when loops with permuted external variables are summed. The symmetrized N-loop,
i.e. the connected N-point density correlation function of the Fermi gas, does
not diverge for low energies and small momenta. In the dynamical limit, where
momenta scale to zero at fixed finite energy variables, the symmetrized N-loop
vanishes as the (2N-2)-th power of the scale parameter.Comment: 24 pages (including 3 EPS figures), LaTeX2e; submitted to Phys. Rev.
Signatures of Electronic Nematic Phase at Isotropic-Nematic Phase Transition
The electronic nematic phase occurs when the point-group symmetry of the
lattice structure is broken, due to electron-electron interactions. We study a
model for the nematic phase on a square lattice with emphasis on the phase
transition between isotropic and nematic phases within mean field theory. We
find the transition to be first order, with dramatic changes in the Fermi
surface topology accompanying the transition. Furthermore, we study the
conductivity tensor and Hall constant as probes of the nematic phase and its
transition. The relevance of our findings to Hall resistivity experiments in
the high- cuprates is discussed.Comment: 5 pages, 3 figure
Singular Structure and Enhanced Friedel Oscillations in the Two-Dimensional Electron Gas
We calculate the leading order corrections (in ) to the static
polarization , with dynamically screened interactions, for the
two-dimensional electron gas. The corresponding diagrams all exhibit singular
logarithmic behavior in their derivatives at and provide significant
enhancement to the proper polarization particularly at low densities. At a
density of , the contribution from the leading order {\em fluctuational}
diagrams exceeds both the zeroth order (Lindhard) response and the self-energy
and exchange contributions. We comment on the importance of these diagrams in
two-dimensions and make comparisons to an equivalent three-dimensional electron
gas; we also consider the impact these finding have on computed
to all orders in perturbation theory
Programs and processes for advancing pediatric acute kidney support therapy in hospitalized and critically ill children: A report from the 26th Acute Disease Quality Initiative (ADQI) consensus conference
Pediatric acute kidney support therapy (paKST) programs aim to reliably provide safe, effective, and timely extracorporeal supportive care for acutely and critically ill pediatric patients with acute kidney injury (AKI), fluid and electrolyte derangements, and/or toxin accumulation with a goal of improving both hospital-based and lifelong outcomes. Little is known about optimal ways to configure paKST teams and programs, pediatric-specific aspects of delivering high-quality paKST, strategies for transitioning from acute continuous modes of paKST to facilitate rehabilitation, or providing effective short- and long-term follow-up. As part of the 26th Acute Disease Quality Initiative Conference, the first to focus on a pediatric population, we summarize here the current state of knowledge in paKST programs and technology, identify key knowledge gaps in the field, and propose a framework for current best practices and future research in paKST
Direct mass measurements beyond the proton drip-line
First on-line mass measurements were performed at the SHIPTRAP Penning trap
mass spectrometer. The masses of 18 neutron-deficient isotopes in the
terbium-to-thulium region produced in fusion-evaporation reactions were
determined with relative uncertainties of about , nine of them
for the first time. Four nuclides (Ho and Tm) were
found to be proton-unbound. The implication of the results on the location of
the proton drip-line is discussed by analyzing the one-proton separation
energies
Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition
The Fermi liquid approach is applied to the problem of spontaneous violation
of the four-fold rotational point-group symmetry () in strongly correlated
two-dimensional electronic systems on a square lattice. The symmetry breaking
is traced to the existence of a topological phase transition. This continuous
transition is triggered when the Fermi line, driven by the quasiparticle
interactions, reaches the van Hove saddle points, where the group velocity
vanishes and the density of states becomes singular. An unconventional Fermi
liquid emerges beyond the implicated quantum critical point.Comment: 6 pages, 4 figure
Sensitive diagnosis and post-treatment follow-up of Schistosoma mansoni infections in asymptomatic Eritrean refugees by Circulating Anodic Antigen (CAA) detection and PCR
The increasing number of refugees coming from or passing through Schistosoma-endemic areas and arriving in Europe highlights the importance of screening for schistosomiasis on arrival, and focuses attention on the choice of diagnostic test. We evaluate the diagnostic performance of circulating anodic antigen (CAA) detection in 92 asymptomatic refugees from Eritrea. Results were compared with already-available stool microscopy, serology, and urine point-of-care circulating cathodic antigen (POC-CCA) data. For a full diagnostic comparison, real-time polymerase chain reaction (PCR) and the POC-CCA were included. All outcomes were compared against a composite reference standard. Urine and serum samples were subjected to the ultra-sensitive and highly specific up-converting particle lateral flow CAA test, Schistosoma spp. real-time PCR was performed on urine and stool, and the POC-CCA was used on urine using the G-score method. CAA was detected in 43% of urine and in 40% of serum samples. Urine PCR was negative in all 92 individuals, whereas 25% showed Schistosoma DNA in stool. POC-CCA was positive in 30% of individuals. The CAA test confirmed all microscopy positives, except for two cases that were also negative by all other diagnostic procedures. Post-treatment, a significant reduction in the number of positives and infection intensity was observed, in particular regarding CAA levels. Our findings confirm that microscopy, serology, and POC-CCA lack the sensitivity to detect all active Schistosoma infections. Accuracy of stool PCR was similar to microscopy, indicating that this method also lacks sensitivity. The CAA test appeared to be the most accurate method for screening active Schistosoma infections and for monitoring treatment efficacy
Fermi surface instabilities at finite Temperature
We present a new method to detect Fermi surface instabilities for interacting
systems at finite temperature. We first apply it to a list of cases studied
previously, recovering already known results in a very economic way, and
obtaining most of the information on the phase diagram analytically. As an
example, in the continuum limit we obtain the critical temperature as an
implicit function of the magnetic field and the chemical potential
. By applying the method to a model proposed to describe reentrant
behavior in , we reproduce the phase diagram obtained
experimentally and show the presence of a non-Fermi Liquid region at
temperatures above the nematic phase.Comment: 10 pages, 10 figure
- …