1,018 research outputs found

    Beyond the Big Top: The Legacy of John Ringling and the American Circus

    Get PDF
    Beyond the Big Top: The Legacy of John Ringling and the American Circus is a focused interpretation of the impact of the American circus post-Civil War through present day, most particularly that of circus impresario, corporate magnate, and philanthropist John Ringling, in what was once a quiet Florida fishing village named Sarasota. It is my observation that John Ringling, through moving the winter quarters of the Ringling Brothers and Barnum & Bailey to Sarasota, investing in a sizable amount of real estate, and spearheading a campaign to bring a world-class art museum and school to the area, played a key role in shaping Florida tourism, diversity, expanding cultural awareness, and boosting the local economy. I have addressed the effects Ringling had on the region, as well as discuss how and why Ringling invested so heavily in Sarasota. The rise of the Ringling Brothers and Barnum & Bailey circus will also be discussed, and how Ringling planned to make contributions that would live on long after he did. Although the Ringling Brothers and Barnum & Bailey Circus shuttered its wagon doors for good in 2017, Ringling ensured that he utilized his proceeds from the show, as well as other ventures, to finance endeavors that have allowed his memory and intentions to live well on into the 21st century

    V39: an unusual object in the field of IC 1613

    Get PDF
    The variable star V39 in the field of IC 1613 is discussed in the light of the available photometric and new spectroscopic data. It has strong emission Balmer lines, and the observed characteristics could be explained by a W Vir pulsating star with a period of 14.341 d, located at more than 115 kpc, that is in the very outer halo of our Galaxy. It should have an apparent companion, a long period (1118d) red variable, belonging to IC 1613. The main uncertainty in this interpretation is an emission feature at 668.4 nm, which we tentatively identified as a He I line.Comment: 5 pages; accepted for publication in Astronomy & Astrophysic

    Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    Get PDF
    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets

    Terrestrial lichen response to partial cutting in lodgepole pine forests on caribou winter range in west-central British Columbia

    Get PDF
    In west-central British Columbia, terrestrial lichens located in older, lodgepole pine (Pinus contorta) forests are important winter forage for woodland caribou (Rangifer tarandus caribou). Clearcut harvesting effectively removes winter forage habitat for decades, so management approaches based on partial cutting were designed to maintain continuous lichen-bearing habitat for caribou. This study tested a group selection system, based on removal of 33% of the forest every 80 years in small openings (15 m diameter), and two irregular shelterwood treatments (whole-tree and stem-only harvesting methods) where 50% of the stand area is cut every 70 years in 20 to 30 m diameter openings. The abundance of common terrestrial lichens among the partial cutting and no-harvest treatments was compared across five replicate blocks, pre-harvest (1995) and post-harvest (1998, 2000 and 2004). The initial loss of preferred forage lichens (Cladonia, Cladina, Cetraria and Stereocaulon) was similar among harvesting treatments, but there was greater reduction in these lichens in the openings than in the residual forest. After eight years, forage lichens in the group selection treatment recovered to pre-harvest amounts, while lichen in the shelterwood treatments steadily increased from 49 to 57% in 1998 to about 70% of pre-harvest amounts in 2004. Although not part of the randomized block design, there was substantially less lichen in three adjacent clearcut blocks than in the partial cuts. Regression analysis pre- and post-harvest indicated that increased cover of trees, shrubs, herbs, woody debris and logging slash corresponded with decreased forage lichen abundance. In the short-term, forestry activities that minimize inputs of woody debris, control herb and shrub development, and moderate the changes in light and temperatures associated with canopy removal will lessen the impact on lichen. Implementation of stand level prescriptions is only one aspect of caribou habitat management. A comprehensive approach should consider all factors and their interactions to maintain a viable population of woodland caribou in west-central British Columbia

    Stellar impact on disequilibrium chemistry and on observed spectra of hot Jupiter atmospheres

    Get PDF
    In this work we study the effect of disequilibrium processes on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of different spectral types. We also address the impact of stellar activity that should be present to a different degree in all stars with convective envelopes. We used the VULCAN chemical kinetic code to compute number densities of species. The temperature-pressure profile of the atmosphere was computed with the HELIOS code. We also utilized the τ\tau-ReX forward model to predict the spectra of planets in primary and secondary eclipses. In order to account for the stellar activity we made use of the observed solar XUV spectrum taken from Virtual Planetary Laboratory (VPL) as a proxy for an active sun-like star. We find large changes in mixing ratios of most chemical species in planets orbiting A-type stars that radiate strong XUV flux inducing a very effective photodissociation. For some species, these changes can propagate very deep into the planetary atmosphere to pressures of around 1 bar. To observe disequilibrium chemistry we favor hot Jupiters with temperatures Teq=1000 K and ultra-hot Jupiters with Teq=3000$ K that also have temperature inversion in their atmospheres. On the other hand, disequilibrium calculations predict little changes in spectra of planets with intermediate temperatures. We also show that stellar activity similar to the one of the modern Sun drives important changes in mixing ratio profiles of atmospheric species. However, these changes take place at very high atmospheric altitudes and thus do not affect predicted spectra. We estimate that the effect of disequilibrium chemistry in planets orbiting nearby bright stars could be robustly detected and studied with future missions with spectroscopic capabilities in infrared such as, e.g., JWST and ARIEL.Comment: 17 pages, 12 figure

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure
    corecore