27 research outputs found

    Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

    Get PDF
    OBJECTIVE-The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). RESEARCH DESIGN AND METHODS-Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. LTS-Intracerebroventiicular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. CONCLUSIONS-This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production. Diabetes 59: 1591-1600, 201

    Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior.

    Get PDF
    Feeding behavior is governed by homeostatic needs and motivational drive to obtain palatable foods. Here, we identify a population of glutamatergic neurons in the paraventricular thalamus of mice that express the glucose transporter Glut2 (encoded by Slc2a2) and project to the nucleus accumbens. These neurons are activated by hypoglycemia and, in freely moving mice, their activation by optogenetics or Slc2a2 inactivation increases motivated sucrose-seeking but not saccharin-seeking behavior. These neurons may control sugar overconsumption in obesity and diabetes

    Comparison of the microbial population dynamics and phylogenetic characterization of a CANOXIS reactor and a UASB reactor degrading trichloroethene

    No full text
    Aims: To understand the microbial ecology underlying trichloethene (TCE) degradation in a coupled anaerobic/aerobic single stage (CANOXIS) reactor oxygenated with hydrogen peroxide (H\u2082O\u2082) and in an upflow anaerobic sludge bed (UASB) reactor. Methods and Results: The molecular study of the microbial population dynamics and a phylogenetic characterization were conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). In both reactors, TCE had a toxic effect on two uncultured bacterial populations whereas oxygen favoured the growth of aerobic species belonging to Rhizobiaceae and Dechloromonas. No methanotrophic bacteria were detected when targeting 16S rRNA gene with universal primers. Alternatively, pmo gene encoding the particulate methane monooxygenase of Methylomonas sp. LW21 could be detected in the coupled reactor when H\u2082O\u2082 was supplied at 0\ub77 g O\u2082 1R\u207b\ub9 day\u207b\ub9. Conclusions: Methylomonas sp. LW21 that could be responsible for the aerobic degradation of the TCE by-products is not among the predominant bacterial populations in the coupled reactor. It seems to have been outcompeted by heterotrophic bacteria (Rhizobiaceae and Dechloromonas sp.) for oxygen. Significance and Impact of the Study: The results obtained show the limitations of the coupled reactor examined in this study. Further investigations should focus on the operating conditions of this reactor in order to favour the growth of the methanotrophs.NRC publication: Ye

    Microbial population dynamics in a CANOXIS and a UASB TCE-degrading bioreactor

    No full text
    Trichloroethylene (TCE), a commin soil and groundwater pollutant, can be biodegraded either in aerobic and anaerobic conditions. Tartakovsky et al. (2003) have shown recently that the TCE degradation performances were higher in the coupled aerobic/anaerobic bioreactor (CANOXIS) oxygenated with hydrogen peroxide (H\u2082O\u2082) at a sub-bactericidal concentration than in an upflow anaerobic sludge bioreactor (UASB). To understand the microbial ecology underlying the TCE degradation in those reactors, a molecular study of the microbial population dynamics and a phylogenetic characterization were conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The two bacteria domains and the presence of functional genes for TCE degradation were investigated using appropriate primers.NRC publication: Ye

    Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.

    No full text
    The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus

    Adenosine A2A receptor gene disruption provokes marked changes in melanocortin content and pro-opiomelanocortin gene expression

    No full text
    A2A receptor knockout (A2AR-/-) mice are more anxious and aggressive, and exhibit reduced exploratory activity than their wild-type littermates (A2AR+/+). Because alpha-melanocyte-stimulating hormone (alpha-MSH) influences anxiety, aggressiveness and motor activity, we investigated the effect of A2AR gene disruption on alpha-MSH content in discrete brain regions and pro-opiomelanocortin (POMC) expression in the hypothalamus and pituitary. No modification in alpha-MSH content was observed in the hypothalamus and medulla oblongata where POMC-expressing perikarya are located. In the arcuate nucleus of the hypothalamus, POMC mRNA levels were not affected by A2AR disruption. Conversely, in A2AR-/- mice, a significant increase in alpha-MSH content was observed in the amygdala and cerebral cortex, two regions that are innervated by POMC terminals. In the pars intermedia of the pituitary, A2AR disruption provoked a significant reduction of POMC mRNA expression associated with a decrease in alpha-MSH content. By contrast, in the anterior lobe of the pituitary, a substantial increase in POMC mRNA and adrenocorticotropin hormone concentrations was observed, and plasma corticosterone concentration was significantly higher in A2AR-/- mice, revealing hyperactivity of their pituitary-adrenocortical axis. Together, these results suggest that adenosine, acting through A2A receptors, may modulate the release of alpha-MSH in the cerebral cortex and amygdala. The data also indicate that A2A receptors are involved in the control of POMC gene expression and biosynthesis of POMC-derived peptides in pituitary melanotrophs and corticotrophs.Journal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe

    Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations.

    No full text
    CONTEXT: Many inherited disorders of calcium and phosphate homeostasis are unexplained at the molecular level. OBJECTIVE: The objective of the study was to identify the molecular basis of phosphate and calcium abnormalities in two unrelated, consanguineous families. PATIENTS: The affected members in family 1 presented with rickets due to profound urinary phosphate-wasting and hypophosphatemic rickets. In the previously reported family 2, patients presented with proximal renal tubulopathy and hypercalciuria yet normal or only mildly increased urinary phosphate excretion. METHODS: Genome-wide linkage scans and direct nucleotide sequence analyses of candidate genes were performed. Transport of glucose and phosphate by glucose transporter 2 (GLUT2) was assessed using Xenopus oocytes. Renal sodium-phosphate cotransporter 2a and 2c (Npt2a and Npt2c) expressions were evaluated in transgenically rescued Glut2-null mice (tgGlut2-/-). RESULTS: In both families, genetic mapping and sequence analysis of candidate genes led to the identification of two novel homozygous mutations (IVS4-2A>G and R124S, respectively) in GLUT2, the gene mutated in Fanconi-Bickel syndrome, a rare disease usually characterized by renal tubulopathy, impaired glucose homeostasis, and hepatomegaly. Xenopus oocytes expressing the [R124S]GLUT2 mutant showed a significant reduction in glucose transport, but neither wild-type nor mutant GLUT2 facilitated phosphate import or export; tgGlut2-/- mice demonstrated a profound reduction of Npt2c expression in the proximal renal tubules. CONCLUSIONS: Homozygous mutations in the facilitative glucose transporter GLUT2, which cause Fanconi-Bickel syndrome, can lead to very different clinical and biochemical findings that are not limited to mild proximal renal tubulopathy but can include significant hypercalciuria and highly variable degrees of urinary phosphate-wasting and hypophosphatemia, possibly because of the impaired proximal tubular expression of Npt2c

    Poplar Propolis Ethanolic Extract Reduces Body Weight Gain and Glucose Metabolism Disruption in High‐Fat Diet‐Fed Mice

    No full text
    International audienceScope Current evidence supports the beneficial effect of polyphenols on the management of obesity and associated comorbidities. This is the case for propolis, a polyphenol-rich substance produced by bees. The aim of the present study is to evaluate the effect of a poplar propolis ethanolic extract (PPEE) on obesity and glucose homeostasis, and to unveil its putative molecular mechanisms of action. Methods and results Male high-fat (HF) diet-fed mice are administered PPEE for 12 weeks. PPEE supplementation reduces the HF-mediated adiposity index, adipocyte hypertrophy, and body weight gain. It also improves HOMA-IR and fasting glucose levels. Gene expression profiling of adipose tissue (AT) shows an induction of mRNA related to lipid catabolism and mitochondrial biogenesis and inhibition of mRNA coding for inflammatory markers. Interestingly, several Nrf2-target genes are induced in AT following administration of PPEE. The ability of PPEE to induce the expression of Nrf2-target genes is studied in adipocytes. PPEE is found to transactivate the Nrf2 response element and the Nrf2 DNA-binding, suggesting that part of the effect of PPEE can be mediated by Nrf2. Conclusion PPEE supplementation may represent an interesting preventive strategy to tackle the onset of obesity and associated metabolic disorders
    corecore