535 research outputs found

    Spin transport in coupled spinor Bose gases

    Full text link
    We report direct measurements of spin transport in a trapped, partially condensed spinor Bose gas. Detailed analyses of spin flux in this out-of-equilibrium quantum gas are performed by monitoring the flow of atoms in different hyperfine spin states. The main mechanisms for motion in this system are exchange scattering and potential energy inhomogeneity, which lead to spin waves in the normal component and domain formation in the condensate. We find a large discrepancy in domain formation timescales with those predicted by potential-driven formation, indicating strong coupling of the condensate to the normal component spin wave

    Impaired limb shortening following stroke: what's in a name?

    Get PDF
    BackgroundDifficulty advancing the paretic limb during the swing phase of gait is a prominent manifestation of walking dysfunction following stroke. This clinically observable sign, frequently referred to as 'foot drop', ostensibly results from dorsiflexor weakness.ObjectiveHere we investigated the extent to which hip, knee, and ankle motions contribute to impaired paretic limb advancement. We hypothesized that neither: 1) minimal toe clearance and maximal limb shortening during swing nor, 2) the pattern of multiple joint contributions to toe clearance and limb shortening would differ between post-stroke and non-disabled control groups.MethodsWe studied 16 individuals post-stroke during overground walking at self-selected speed and nine non-disabled controls who walked at matched speeds using 3D motion analysis.ResultsNo differences were detected with respect to the ankle dorsiflexion contribution to toe clearance post-stroke. Rather, hip flexion had a greater relative influence, while the knee flexion influence on producing toe clearance was reduced.ConclusionsSimilarity in the ankle dorsiflexion, but differences in the hip and knee, contributions to toe clearance between groups argues strongly against dorsiflexion dysfunction as the fundamental impairment of limb advancement post-stroke. Marked reversal in the roles of hip and knee flexion indicates disruption of inter-joint coordination, which most likely results from impairment of the dynamic contribution to knee flexion by the gastrocnemius muscle in preparation for swing. These findings suggest the need to reconsider the notion of foot drop in persons post-stroke. Redirecting the focus of rehabilitation and restoration of hemiparetic walking dysfunction appropriately, towards contributory neuromechanical impairments, will improve outcomes and reduce disability

    Optical excitation of nonlinear spin waves

    Full text link
    We demonstrate a technique for exciting spin waves in an ultracold gas of Rb-87 atoms based on tunable AC Stark potentials. This technique allows us to excite normal modes of spin waves with arbitrary amplitudes in the trapped gas, including dipole, quadrupole, octupole, and hexadecapole modes. These modes exhibit strong nonlinearities, which manifest as amplitude dependence of the excitation frequencies and departure from sinusoidal behavior. Our results are in good agreement with a full treatment of a quantum Boltzmann transport equation.Comment: 11 pages, 5 figure

    Localized collapse and revival of coherence in an ultracold Bose gas

    Full text link
    We study the collapse and revival of coherence induced by dipolar spin waves in a trapped gas of Rb-87 atoms. In particular we observe spatially localized collapse and revival of Ramsey fringe contrast and show how the pattern of coherence depends on strength of the spin wave excitation. We find that the spatial character of the coherence dynamics is incompatible with a simple model based only on position-space overlap of wave functions. This phenomenon requires a full phase-space description of the atomic spin using a quantum Boltzmann transport equation, which highlights spin wave-induced coherent spin currents and the ensuing dynamics they drive.Comment: 5 pages, 4 figure

    Duality Between Spatial and Angular Shift in Optical Reflection

    Get PDF
    We report a unified representation of the spatial and angular Goos-Hanchen and Imbert-Fedorov shifts that occur when a light beam reflects from a plane interface. We thus reveal the dual nature of spatial and angular shifts in optical beam reflection. In the Goos-Hanchen case we show theoretically and experimentally that this unification naturally arises in the context of reflection from a lossy surface (e.g., a metal).Comment: 4 pages, 3 figure

    Superfluid vs Ferromagnetic Behaviour in a Bose Gas of Spin-1/2 Atoms

    Full text link
    We study the thermodynamic phases of a gas of spin-1/2 atoms in the Hartree-Fock approximation. Our main result is that, for repulsive or weakly-attractive inter-component interaction strength, the superfluid and ferromagnetic phase transitions occur at the same temperature. For strongly-attractive inter-component interaction strength, however, the ferromagnetic phase transition occurs at a higher temperature than the superfluid phase transition. We also find that the presence of a condensate acts as an effective magnetic field that polarizes the normal cloud. We finally comment on the validity of the Hartree-Fock approximation in describing different phenomena in this system.Comment: 10 pages, 2 figure

    Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease

    Get PDF
    Citation: McGuirk, J. P., Robert Smith, J., Divine, C. L., Zuniga, M., & Weiss, M. L. (2015). Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease. Pharmaceuticals, 8(2), 196-220. doi:10.3390/ph8020196Allogeneic hematopoietic cell transplantation (allo-HCT), a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD). The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ)-derived mesenchymal stromal cells (MSCs) as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines) to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature

    Full text link
    We study collective spin oscillations in a spin-1 Bose gas above the Bose-Einstein transition temperature. Starting from the Heisenberg equation of motion, we derive a kinetic equation describing the dynamics of a thermal gas with the spin-1 degree of freedom. Applying the moment method to the kinetic equation, we study spin-wave collective modes with dipole symmetry. The dipole modes in the spin-1 system are found to be classified into the three type of modes. The frequency and damping rate are obtained as functions of the peak density. The damping rate is characterized by three relaxation times associated with collisions.Comment: 19 pages, 5 figur

    Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.

    Get PDF
    A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations
    • …
    corecore