303 research outputs found

    The evaluation of a synthetic material for use as a wave protection agent on irrigation dams

    Get PDF
    This report presents the results of a field and laboratory testing program to evaluate the performance of a slope protection method utilizing a new synthetic fabric material in the form of soil filled bags. The field study was performed to evaluate the feasibility of filling and placing the bags on an operational irrigation darn using equipment and resources available to a typical farmer. Test sections on the dam were monitored to determine the amount of wave erosion of both unprotected and protected slopes of the dam. Tensile strength tests were performed on samples of the fabric. The results of the strength tests indicate the durability of the system. Laboratory immersion tests were conducted on two soil materials used to fill the bags. The results of the immersion tests were then compared to the field performance of each material in the bags. The results of this investigation indicate that the system is readily installed on irrigation dams and offers excellent slope protection. The factors which influence the practicality of the system include the cost of alternate slope protection methods, the position of the irrigation dam in relation to local winds and the availability of fill material for the bags. A medium-scale laboratory model study was performed on a new synthetic fabric designed to be used in the form of soil-filled sand pillows in order to determine the relationship that affect the stability of the pillows and to determine basic design criteria for the protection system. The model testing of the sand pillow system was performed to evaluate the parameters that affect the stability of the pillows when placed on an embankment slope. The results of the model investigation were consolidated and analyzed to develop design criteria for the individual pillows. The results of the model study investigation indicate that the stability of sand pillows is primarily a function of wave height, wave period, embankment slope angle, and individual sand pillow weight. A possible design equation was developed for a silty clay soil such that the wave height calculated for a given reservoir could be utilized to determine the weight of the individual sand pillow necessary to economically and effectively protect the embankment. The results of the laboratory and field evaluation investigation indicate that the sand pillow method offers excellent slope protection. However, since some soils appear to be readily lost through fabric when subjected to repeated wave action, some limiting minimum particle size specification is required in order to prevent unnecessary maintenance of the system.Project # B-122-MO Agreement # 14-34-0001-809

    Crop Nitrogen and Phosphorus Utilization following Application of Slurry from Swine Fed Traditional or Low Phytate Corn Diets

    Get PDF
    Field application of swine (Sus scrofa) slurry provides essential nutrients for crop production. The N to P ratio for slurry is lower than needed by most crops resulting in P accumulation when applied at N rates required for crop growth. Low phytate corn (Zea mays L.) (LPC) contains similar amounts of total P but less phytate P than traditional corn (TC) resulting in improved P bioavailability and reduced P excretion by monogastric animals. While manure from swine-fed LPC diets has a higher N to P ratio than that from TC diets, field studies comparing crop utilization of nutrients from LPC manure have not been conducted. A field study was conducted to compare N and P utilization by no-tillage rainfed sorghum [Sorghum bicolor (L.) Moench.] receiving three annual surface applications of nutrients (inorganic fertilizer, LPC slurry, and TC slurry) and by irrigated corn receiving one incorporated application of nutrients. Sorghum grain and total dry matter N utilization exhibited a year by treatment interaction but total dry matter N utilization was similar for both manure types in all years (61.2 ± 2.6% for TC and 53.8 ± 2.6% for LPC). Grain P utilization was similar for inorganic fertilizer and manure but differed among years (44.4 ± 7.0% in 1999, 25.1 ± 1.4% in 2000, and 57.0 ± 2.2% in 2001). Corn grain N and P utilization did not diff er among nutrient sources in the year of application (50.7 ± 2.4% for N and 40.4 ± 3.0 for P) and increased little in the year following application (62.2 ± 3.0% for N and 50.2 ± 4.5% for P). Crop N and P utilization from LPC manure and TC manure was similar and nutrient guidelines developed for TC swine slurry should also apply for LPC slurry

    Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures

    Get PDF
    Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2–20 m), deep chlorophyll maximum (DCM; 28–90 m), and deep (100–4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface bacterial communities displayed a general congruency with the ecological provinces as defined by Longhurst with modest exceptions usually associated with unique hydrographic and biogeochemical features. Collectively, our findings suggest that vertical (habitat) and latitudinal (distance) biogeographic signatures are present and that both environmental parameters and ecological provinces drive the composition of bacterial assemblages in the eastern Atlantic Ocean

    Correlation distance dependence of the resonance frequency of intermolecular zero quantum coherences and its implication for MR thermometry

    Get PDF
    Purpose: Because the resonance frequency of water–fat intermolecular zero-quantum coherences (iZQCs) reflects the water–fat frequency separation at the microscopic scale, these frequencies have been proposed and used as a mean to obtain more accurate temperature information. The purpose of this work was to investigate the dependence of the water–fat iZQC resonance frequency on sample microstructure and on the specific choice of the correlation distance. Methods: The effect of water–fat susceptibility gradients on the water–methylene iZQC resonance frequency was first computed and then measured for different water–fat emulsions and for a mixture of porcine muscle and fat. Similar measurements were also performed for mixed heteronuclear spin systems. Results: A strong dependence of the iZQC resonance frequency on the sample microstructure and on the specific choice of the correlation distance was found for spin systems like water and fat that do not mix, but not for spin systems that mix at the molecular level. Conclusions: Because water and fat spins do not mix at the molecular level, the water–fat iZQC resonance frequency and its temperature coefficient are not only affected by sample microstructure but also by the specific choice of the correlation distance

    Effect of microscopic susceptibility gradients on chemical-shift-based fat fraction quantification in supraclavicular fat

    Get PDF
    Background: Susceptibility differences between fat and water can cause changes in the water-fat frequency separation that can negatively affect the accuracy of fat fraction techniques. This may be especially relevant for brown adipose tissue, as MRI fat fraction techniques have been proposed for its detection. Purpose: To assess the effect of microscopic magnetic susceptibility gradients on the water-fat frequency separation and its impact on chemical-shift-based fat fraction quantification techniques in the supraclavicular fat, where brown adipose tissue is commonly found in humans. Study Type: Prospective. Population/Subjects/Phantom/Specimen/Animal Model: Subjects: 11 healthy volunteers, mean age of 26 and mean BMI of 23, three overweight volunteers, mean age of 38 and mean BMI of 33. Phantoms: bovine phantom and intralipid fat emulsion. Simulations: various water-fat distributions. Field Strength/Sequence: Six-echo gradient echo chemical-shift-encoded sequence at 3T. Assessment: Fat fraction values as obtained from a water-fat spectral model accounting for susceptibility-induced water-fat frequency variations were directly compared to traditional spectral models that assume constant water-fat frequency separation. Statistical Tests: Two-tail t-tests were used for significance testing (p < 0.05.) A Bayesian Information Criterion difference of 6 between fits was taken as strong evidence of an improved model. Results: Phantom experiments and simulation results showed variations of the water-fat frequency separation up to 0.4 ppm and 0.6 ppm, respectively. In the supraclavicular area, the water-fat frequency separation produced by magnetic susceptibility gradients varied by as much as ±0.4 ppm, with a mean of 0.08 ± 0.14 ppm, producing a mean difference in fat fraction of –1.26 ± 5.26%. Data Conclusion: In the supraclavicular fat depot, microscopic susceptibility gradients that exist within a voxel between water and fat compartments can produce variations in the water-fat frequency separation. These variations may produce fat fraction quantification errors of 5% when a spectral model with a fixed water-fat frequency separation is applied, which could impact MR brown fat techniques

    Sequence variation of koala retrovirus transmembrane protein p15E among koalas from different geographic regions

    Get PDF
    AbstractThe koala retrovirus (KoRV), which is transitioning from an exogenous to an endogenous form, has been associated with high mortality in koalas. For other retroviruses, the envelope protein p15E has been considered a candidate for vaccine development. We therefore examined proviral sequence variation of KoRV p15E in a captive Queensland and three wild southern Australian koalas. We generated 163 sequences with intact open reading frames, which grouped into 39 distinct haplotypes. Sixteen distinct haplotypes comprising 139 of the sequences (85%) coded for the same polypeptide. Among the remaining 23 haplotypes, 22 were detected only once among the sequences, and each had 1 or 2 non-synonymous differences from the majority sequence. Several analyses suggested that p15E was under purifying selection. Important epitopes and domains were highly conserved across the p15E sequences and in previously reported exogenous KoRVs. Overall, these results support the potential use of p15E for KoRV vaccine development
    • …
    corecore