36 research outputs found

    Sexually Dimorphic Serotonergic Dysfunction in a Mouse Model of Huntington's Disease and Depression

    Get PDF
    Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Effects of chronic selective serotonin reuptake inhibitors on 8-OH-DPAT-induced facilitation of ejaculation in rats: comparison of fluvoxamine and paroxetine.

    No full text
    Contains fulltext : 47714.pdf (publisher's version ) (Closed access)RATIONALE: Chronic treatment with selective serotonin reuptake inhibitors (SSRIs) can delay ejaculation in humans, but the extent of this effect differs between SSRIs. The involvement of 5-HT1A receptors is likely, since 5-HT1A receptor agonists accelerate ejaculation and chronic SSRI treatment is thought to desensitize 5-HT1A receptors. OBJECTIVES: This study was conducted to examine the effects of chronic pretreatment with the SSRIs fluvoxamine and paroxetine on the facilitation of ejaculation induced by the 5-HT1A receptor agonist 8-OH-DPAT. METHODS: Sexually experienced Wistar rats with normal ejaculatory behavior were treated for 22 days with vehicle, fluvoxamine (30 mg/kg/day), or paroxetine (10 or 20 mg/kg/day, p.o.). On day 22, rats received a challenge with saline or 8-OH-DPAT (0.4 mg/kg, s.c.). Sexual behavior was tested on days 1, 8, 15, and 22 of the SSRI-treatment. RESULTS: Treatment with both doses of paroxetine, but not fluvoxamine, delayed ejaculation. 8-OH-DPAT strongly accelerated ejaculation under vehicle conditions. Pretreatment with paroxetine reduced the effects of 8-OH-DPAT on ejaculation in a dose-dependent manner and more strongly than fluvoxamine. CONCLUSIONS: SSRIs affect 5-HT1A receptors involved in ejaculation. The degree to which this occurs, with paroxetine exerting a stronger effect than fluvoxamine, might determine the extent of SSRI-induced delayed ejaculation
    corecore