10,297 research outputs found
The DRAO 26-m Large Scale Polarization Survey at 1.41 GHz
The Effelsberg telescope as well as the DRAO synthesis telescope are
currently surveying the Galactic polarized emission at 21 cm in detail. These
new surveys reveal an unexpected richness of small-scale structures in the
polarized sky. However, observations made with synthesis or single-dish
telescopes are not on absolute intensity scales and therefore lack information
about the large-scale distribution of polarized emission to a different degree.
Until now, absolutely calibrated polarization data from the Leiden/Dwingeloo
polarization surveys are used to recover the missing spatial information.
However, these surveys cannot meet the requirements of the recent survey
projects regarding sampling and noise and new polarization observation were
initiated to complement the Leiden/Dwingeloo Survey. In this paper we will
outline the observation and report on the progress for a new polarization
survey of the northern sky with the 26-m telescope of the DRAO.Comment: 5 pages, 6 figure
Structure and formation energy of carbon nanotube caps
We present a detailed study of the geometry, structure and energetics of
carbon nanotube caps. We show that the structure of a cap uniquely determines
the chirality of the nanotube that can be attached to it. The structure of the
cap is specified in a geometrical way by defining the position of six pentagons
on a hexagonal lattice. Moving one (or more) pentagons systematically creates
caps for other nanotube chiralities. For the example of the (10,0) tube we
study the formation energy of different nanotube caps using ab-initio
calculations. The caps with isolated pentagons have an average formation energy
0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger
formation energy of 1.5eV. We show that the formation energy of adjacent
pentagon pairs explains the diameter distribution in small-diameter nanotube
samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys.
Rev.
An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz
A new polarization survey of the northern sky at 1.41 GHz is presented. The
observations were carried out using the 25.6m telescope at the Dominion Radio
Astrophysical Observatory in Canada, with an angular resolution of 36 arcmin.
The data are corrected for ground radiation to obtain Stokes U and Q maps on a
well-established intensity scale tied to absolute determinations of zero
levels, containing emission structures of large angular extent, with an rms
noise of 12 mK. Survey observations were carried out by drift scanning the sky
between -29 degr and +90 degr declination. The fully sampled drift scans,
observed in steps of 0.25 degr to 2.5 degr in declination, result in a northern
sky coverage of 41.7% of full Nyquist sampling. The survey surpasses by a
factor of 200 the coverage, and by a factor of 5 the sensitivity, of the
Leiden/Dwingeloo polarization survey (Spoelstra 1972) that was until now the
most complete large-scale survey. The temperature scale is tied to the
Effelsberg scale. Absolute zero-temperature levels are taken from the
Leiden/Dwingeloo survey after rescaling those data by the factor of 0.94. The
paper describes the observations, data processing, and calibration steps. The
data are publicly available at http://www.mpifr-bonn.mpg.de/div/konti/26msurvey
or http://www.drao.nrc.ca/26msurvey.Comment: 18 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Gamma-ray Flares and VLBI Outbursts of Blazars
A model is developed for the time dependent electromagnetic - radio to
gamma-ray - emission of active galactic nuclei, specifically, the blazars,
based on the acceleration and creation of leptons at a propagating
discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a
discrete relativistic jet component as observed with
very-long-baseline-interferometry (VLBI). Equations are derived for the number,
momentum, and energy of particles in the front taking into account synchrotron,
synchrotron-self-Compton (SSC), and inverse-Compton processes as well as
photon-photon pair production. The apparent synchrotron, SSC, and
inverse-Compton luminosities as functions of time are determined. Predictions
of the model are compared with observations in the gamma, optical and radio
bands. The delay between the high-energy gamma-ray flare and the onset of the
radio is explained by self-absorption and/or free-free absorption by external
plasma. Two types of gamma-ray flares are predicted depending on pair creation
in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R.
Lovelace by sending postal address to [email protected]
Electronic structure of silicon-based nanostructures
We have developed an unifying tight-binding Hamiltonian that can account for
the electronic properties of recently proposed Si-based nanostructures, namely,
Si graphene-like sheets and Si nanotubes. We considered the and
models up to first- and second-nearest neighbors, respectively. Our
results show that the Si graphene-like sheets considered here are metals or
zero-gap semiconductors, and that the corresponding Si nanotubes follow the
so-called Hamada's rule [Phys. Rev. Lett. {\bf 68}, 1579 1992]. Comparison to a
recent {\it ab initio} calculation is made.Comment: 12 pages, 6 Figure
TRIS III: the diffuse galactic radio emission at
We present values of temperature and spectral index of the galactic diffuse
radiation measured at 600 and 820 MHz along a 24 hours right ascension circle
at declination . They have been obtained from a subset of
absolute measurements of the sky temperature made with TRIS, an experiment
devoted to the measurement of the Cosmic Microwave Background temperature at
decimetric-wavelengths with an angular resolution of about .
Our analysis confirms the preexisting picture of the galactic diffuse
emission at decimetric wavelength and improves the accuracy of the measurable
quantities. In particular, the signal coming from the halo has a spectral index
in the range above 600 MHz, depending on the sky position. In the
disk, at TRIS angular resolution, the free-free emission accounts for the 11%
of the overall signal at 600 MHz and 21% at 1420 MHz. The polarized component
of the galactic emission, evaluated from the survey by Brouw and Spoelstra,
affects the observations at TRIS angular resolution by less than 3% at 820 MHz
and less than 2% at 600 MHz. Within the uncertainties, our determination of the
galactic spectral index is practically unaffected by the correction for
polarization.
Since the overall error budget of the sky temperatures measured by TRIS at
600 MHz, that is 66 mK(systematic)18 mK (statistical), is definitely smaller
than those reported in previous measurements at the same frequency, our data
have been used to discuss the zero levels of the sky maps at 150, 408, 820 and
1420 MHz in literature. Concerning the 408 MHz survey, limiting our attention
to the patch of sky corresponding to the region observed by TRIS, we suggest a
correction of the base-level of K.Comment: Accepted for publication in the Astrophysical Journa
GSH23.0-0.7+117, a neutral hydrogen shell in the inner Galaxy
GSH23.0-0.7+117 is a well-defined neutral hydrogen shell discovered in the
VLA Galactic Plane Survey (VGPS). Only the blueshifted side of the shell was
detected. The expansion velocity and systemic velocity were determined through
the systematic behavior of the HI emission with velocity. The center of the
shell is at (l,b,v)=(23.05,-0.77,+117 km/s). The angular radius of the shell is
6.8', or 15 pc at a distance of 7.8 kpc. The HI mass divided by the volume of
the half-shell implies an average density n_H = 11 +/- 4 cm^{-3} for the medium
in which the shell expanded. The estimated age of GSH23.0-0.7+117 is 1 Myr,
with an upper limit of 2 Myr. The modest expansion energy of 2 * 10^{48} erg
can be provided by the stellar wind of a single O4 to O8 star over the age of
the shell. The 3 sigma upper limit to the 1.4 GHz continuum flux density
(S_{1.4} < 248 mJy) is used to derive an upper limit to the Lyman continuum
luminosity generated inside the shell. This upper limit implies a maximum of
one O9 star (O8 to O9.5 taking into account the error in the distance) inside
the HI shell, unless most of the incident ionizing flux leaks through the HI
shell. To allow this, the shell should be fragmented on scales smaller than the
beam (2.3 pc). If the stellar wind bubble is not adiabatic, or the bubble has
burst (as suggested by the HI channel maps), agreement between the energy and
ionization requirements is even less likely. The limit set by the non-detection
in the continuum provides a significant challenge for the interpretation of
GSH23.0-0.7+117 as a stellar wind bubble. A similar analysis may be applicable
to other Galactic HI shells that have not been detected in the continuum.Comment: 18 pages, 6 figures. Figures 1 and 4 separately in GIF format.
Accepted for publication in Astrophysical Journa
- âŠ