GSH23.0-0.7+117 is a well-defined neutral hydrogen shell discovered in the
VLA Galactic Plane Survey (VGPS). Only the blueshifted side of the shell was
detected. The expansion velocity and systemic velocity were determined through
the systematic behavior of the HI emission with velocity. The center of the
shell is at (l,b,v)=(23.05,-0.77,+117 km/s). The angular radius of the shell is
6.8', or 15 pc at a distance of 7.8 kpc. The HI mass divided by the volume of
the half-shell implies an average density n_H = 11 +/- 4 cm^{-3} for the medium
in which the shell expanded. The estimated age of GSH23.0-0.7+117 is 1 Myr,
with an upper limit of 2 Myr. The modest expansion energy of 2 * 10^{48} erg
can be provided by the stellar wind of a single O4 to O8 star over the age of
the shell. The 3 sigma upper limit to the 1.4 GHz continuum flux density
(S_{1.4} < 248 mJy) is used to derive an upper limit to the Lyman continuum
luminosity generated inside the shell. This upper limit implies a maximum of
one O9 star (O8 to O9.5 taking into account the error in the distance) inside
the HI shell, unless most of the incident ionizing flux leaks through the HI
shell. To allow this, the shell should be fragmented on scales smaller than the
beam (2.3 pc). If the stellar wind bubble is not adiabatic, or the bubble has
burst (as suggested by the HI channel maps), agreement between the energy and
ionization requirements is even less likely. The limit set by the non-detection
in the continuum provides a significant challenge for the interpretation of
GSH23.0-0.7+117 as a stellar wind bubble. A similar analysis may be applicable
to other Galactic HI shells that have not been detected in the continuum.Comment: 18 pages, 6 figures. Figures 1 and 4 separately in GIF format.
Accepted for publication in Astrophysical Journa