114 research outputs found

    Morphometry as a probe of the evolution of jellyfish galaxies:Evidence of broadening in the surface brightness profiles of ram-pressure stripping candidates in the multicluster system A901/A902

    Get PDF
    We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z ∌ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm MORFOMETRYKA on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, MORFOMETRYKA and IRAF/ELLIPSE on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower SĂ©rsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate

    Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology

    Get PDF
    Purpose We aimed to assess if there is a difference of distribution and volume of white matter hyperintensities (WMH) in the brain according to the Circle of Willis (CoW) configuration in patients with carotid artery pathology. Material and methods One-hundred consecutive patients (79 males, 21 females; mean age 70 years; age range 46–84 years) that underwent brain MRI before carotid endarterectomy (CEA) were included. FLAIR-WMH lesion volume was performed using a semi-automated segmentation technique and the status of the circle of Willis was assessed by two neuroradiologists in consensus. Results We found a prevalence of 55% of variants in the CoW configuration; 22 cases had one variants (40%); 25 cases had two variants (45.45%) and 8 cases showed 3 variants (14.55%). The configuration that was associated with the biggest WMH volume and number of lesions was the A1 + PcoA + PcoA. The PcoA variants were the most prevalent and there was no statistically significant difference in number of lesions and WMH for each vascular territory assessed and the same results were found for AcoA and A1 variants. Conclusion Results of our study suggest that the more common CoW variants are not associated with the presence of an increased WMH or number of lesions whereas uncommon configurations, in particular when 2 or more segment are missing increase the WMH volume and number of lesions. The WHM volume of the MCA territory seems to be more affected by the CoW configuration

    EPOCHS VI: The Size and Shape Evolution of Galaxies since z ~ 8 with JWST Observations

    Full text link
    We present the results of a size and structural analysis of 1395 galaxies at 0.5≀zâ‰Č80.5 \leq z \lesssim 8 with stellar masses log⁥(M∗/M⊙)\log \left(M_* / M_{\odot}\right) >> 9.5 within the JWST Public CEERS field that overlaps with the HST CANDELS EGS observations. We use GALFIT to fit single S\'ersic models to the rest-frame optical profile of our galaxies, which is a mass-selected sample complete to our redshift and mass limit. Our primary result is that at fixed rest-frame wavelength and stellar mass, galaxies get progressively smaller, evolving as ∌(1+z)−0.71±0.19\sim (1+z)^{-0.71\pm0.19} up to z∌8z \sim 8. We discover that the vast majority of massive galaxies at high redshifts have low S\'ersic indices, thus do not contain steep, concentrated light profiles. Additionally, we explore the evolution of the size-stellar mass relationship, finding a correlation such that more massive systems are larger up to z∌3z \sim 3. This relationship breaks down at z>3z > 3, where we find that galaxies are of similar sizes, regardless of their star formation rates and S\'ersic index, varying little with mass. We show that galaxies are more compact at redder wavelengths, independent of sSFR or stellar mass up to z∌3z \sim 3. We demonstrate the size evolution of galaxies continues up to z∌8z \sim 8, showing that the process or causes for this evolution is active at early times. We discuss these results in terms of ideas behind galaxy formation and evolution at early epochs, such as their importance in tracing processes driving size evolution, including minor mergers and AGN activity.Comment: Submitted to MNRA

    Modelling [18F]LW223 PET data using simplified imaging protocols for quantification of TSPO expression in the rat heart and brain

    Get PDF
    PURPOSE: To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [(18)F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS: Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [(18)F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (V(T)) and binding potential transfer corrected (BP(TC)) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40–120 min) were estimated. RESULTS: PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [(18)F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BP(TC) more stable in the heart and V(T) more stable in the brain. CONCLUSION: Modelling of [(18)F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05482-1

    Plaque imaging volume analysis: technique and application

    Get PDF
    The prevention and management of atherosclerosis poses a tough challenge to public health organizations worldwide. Together with myocardial infarction, stroke represents its main manifestation, with up to 25% of all ischemic strokes being caused by thromboembolism arising from the carotid arteries. Therefore, a vast number of publications have focused on the characterization of the culprit lesion, the atherosclerotic plaque. A paradigm shift appears to be taking place at the current state of research, as the attention is gradually moving from the classically defined degree of stenosis to the identification of features of plaque vulnerability, which appear to be more reliable predictors of recurrent cerebrovascular events. The present review will offer a perspective on the present state of research in the field of carotid atherosclerotic disease, focusing on the imaging modalities currently used in the study of the carotid plaque and the impact that such diagnostic means are having in the clinical setting

    Optimization and Reproducibility of Aortic Valve 18F-Fluoride Positron Emission Tomography in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: 18F-Fluoride positron emission tomography (PET) and computed tomography (CT) can measure disease activity and progression in aortic stenosis. Our objectives were to optimize the methodology, analysis, and scan-rescan reproducibility of aortic valve 18F-fluoride PET-CT imaging. METHODS AND RESULTS\textbf{METHODS AND RESULTS}: Fifteen patients with aortic stenosis underwent repeated 18F-fluoride PET-CT. We compared nongated PET and noncontrast CT, with a modified approach that incorporated contrast CT and ECG-gated PET. We explored a range of image analysis techniques, including estimation of blood-pool activity at differing vascular sites and a most diseased segment approach. Contrast-enhanced ECG-gated PET-CT permitted localization of 18F-fluoride uptake to individual valve leaflets. Uptake was most commonly observed at sites of maximal mechanical stress: the leaflet tips and the commissures. Scan-rescan reproducibility was markedly improved using enhanced analysis techniques leading to a reduction in percentage error from ±63% to ±10% (tissue to background ratio MDS mean of 1.55, bias -0.05, limits of agreement -0·20 to +0·11). CONCLUSIONS\textbf{CONCLUSIONS}: Optimized 18F-fluoride PET-CT allows reproducible localization of calcification activity to different regions of the aortic valve leaflet and commonly to areas of increased mechanical stress. This technique holds major promise in improving our understanding of the pathophysiology of aortic stenosis and as a biomarker end point in clinical trials of novel therapies. CLINICAL TRIAL REGISTRATION\textbf{CLINICAL TRIAL REGISTRATION} - URL: http://www.clinicaltrials.gov. Unique identifier: NCT02132026.The study was funded by the British Heart Foundation (FS/14/78/31020). Drs Pawade, Cartlidge, Jenkins, Dweck, and Newby are supported by the British Heart Foundation (SS/CH/09/002/26360, FS/13/77/30488, SS/CH/09/002/2636, FS/14/78/31020, and CH/09/002). Dr Newby is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA). Dr Dweck is the recipient of the Sir Jules Thorn Award for Biomedical Research 2015. Dr Adamson is supported by New Zealand Overseas Training and Research Fellowship (1607) and Edinburgh and Lothians Health Foundation (50–534). The Wellcome Trust Clinical Research Facility and the Clinical Research Imaging Centre are supported by NHS Research Scotland (NRS) through NHS Lothian. Dr Rudd is partly supported by the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation, and the Wellcome Trust

    Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1

    Get PDF
    The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe Survey (S-PLUS) in 12 optical bands, and present a catalogue of the morphologies of galaxies brighter than r = 17 mag determined both using a novel multiband morphometric fitting technique and Convolutional Neural Networks (CNNs) for computer vision. Using the CNNs, we find that, compared to our baseline results with three bands, the performance increases when using 5 broad and 3 narrow bands, but is poorer when using the full 12 band S-PLUS image set. However, the best result is still achieved with just three optical bands when using pre-trained network weights from an ImageNet data set. These results demonstrate the importance of using prior knowledge about neural network weights based on training in unrelated, extensive data sets, when available. Our catalogue contains 3274 galaxies in Stripe-82 that are not present in Galaxy Zoo 1 (GZ1), and we also provide our classifications for 4686 galaxies that were considered ambiguous in GZ1. Finally, we present a prospect of a novel way to take advantage of 12 band information for morphological classification using morphometric features, and we release a model that has been pre-trained on several bands that could be adapted for classifications using data from other surveys. The morphological catalogues are publicly available.Fil: Bom, C. R.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Cortesi, A.. Valongo Observatory; BrasilFil: Lucatelli, G.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Dias, L. O.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Schubert, P.. Centro Brasileiro de Pesquisa Fisicas; BrasilFil: Oliveira Schwarz, G. B.. Universidade Presbiteriana Mackenzie; BrasilFil: Cardoso, N. M.. Universidade de Sao Paulo; BrasilFil: Lima, E. V. R.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Mendes de Oliveira, C.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Sodre, L.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Ferrari, F.. Universidade Federal Do Rio Grande.; BrasilFil: Damke, G.. Universidad de La Serena; ChileFil: Overzier, R.. MinistĂ©rio de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Kanaan, A.. Universidade Federal Da Santa Catarina. Cent.de Cs FĂ­sicas E MatemĂĄticas. Departamento de FĂ­sica; BrasilFil: Ribeiro, T.. Universidade Federal do Rio Grande do Sul; BrasilFil: Schoenell, W.. Noao; Estados Unido

    Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism

    Get PDF
    Myocardial infarction (MI) is one of the leading causes of death worldwide, and inflammation is central to tissue response and patient outcomes. The 18-kDa translocator protein (TSPO) has been used in PET as an inflammatory biomarker. The aims of this study were to screen novel, fluorinated, TSPO radiotracers for susceptibility to the rs6971 genetic polymorphism using in vitro competition binding assays in human brain and heart; assess whether the in vivo characteristics of our lead radiotracer, 18F-LW223, are suitable for clinical translation; and validate whether 18F-LW223 can detect macrophage-driven inflammation in a rat MI model. Methods: Fifty-one human brain and 29 human heart tissue samples were screened for the rs6971 polymorphism. Competition binding assays were conducted with 3H-PK11195 and the following ligands: PK11195, PBR28, and our novel compounds (AB5186 and LW223). NaĂŻve rats and mice were used for in vivo PET kinetic studies, radiometabolite studies, and dosimetry experiments. Rats underwent permanent coronary artery ligation and were scanned using PET/CT with an invasive input function at 7 d after MI. For quantification of PET signal in the hypoperfused myocardium, K1 (rate constant for transfer from arterial plasma to tissues) was used as a surrogate marker of perfusion to correct the binding potential for impaired radiotracer transfer from plasma to tissue (BPTC). Results: LW223 binding to TSPO was not susceptible to the rs6971 genetic polymorphism in human brain and heart samples. In rodents, 18F-LW223 displayed a specific uptake consistent with TSPO expression, a slow metabolism in blood (69% of parent at 120 min), a high plasma free fraction of 38.5%, and a suitable dosimetry profile (effective dose of 20.5–24.5 ÎŒSv/MBq). 18F-LW223 BPTC was significantly higher in the MI cohort within the infarct territory of the anterior wall relative to the anterior wall of naĂŻve animals (32.7 ± 5.0 vs. 10.0 ± 2.4 cm3/mL/min, P ≀ 0.001). Ex vivo immunofluorescent staining for TSPO and CD68 (macrophage marker) resulted in the same pattern seen with in vivo BPTC analysis. Conclusion: 18F-LW223 is not susceptible to the rs6971 genetic polymorphism in in vitro assays, has favorable in vivo characteristics, and is able to accurately map macrophage-driven inflammation after MI

    Genetic and environmental factors on heart rate, mean arterial pressure and carotid intima–media thickness: A longitudinal twin study

    Get PDF
    Background: Heart rate (HR), mean arterial pressure (MAP) and carotid intima–media thickness (cIMT) are moderately heritable cardiovascular traits, but the environmental effects on the longitudinal change of their heritability have never been investigated. Methods: 368 Italian and Hungarian twins (107 monozygotic, 77 dizygotic) underwent oscillometric measurement and B-mode sonography of bilateral carotid arteries in 2009/2010 and 2014. Within- -individual/cross-study wave, cross-twin/within-study wave and cross-twin/cross-study wave correlations were estimated, and bivariate Cholesky models were fitted to decompose the total variance at each wave and covariance between study waves into additive genetic, shared and unique environmental components. Results: For each trait, a moderate longitudinal stability was observed, with within-individual/crosswave correlations of 0.42 (95% CI: 0.33–0.51) for HR, 0.34 (95% CI: 0.24–0.43) for MAP, and 0.23 (95% CI: 0.12–0.33) for cIMT. Cross-twin/cross-wave correlations in monozygotic pairs were all significant and substantially higher than the corresponding dizygotic correlations. Genetic continuity was the main source of longitudinal stability, with across-time genetic correlations of 0.52 (95% CI: 0.29–0.71) for HR, 0.56 (95% CI: 0.31–0.81) for MAP, and 0.36 (95% CI: 0.07–0.64) for cIMT. Overlapping genetic factors explained respectively 57%, 77%, and 68% of the longitudinal covariance of the HR, MAP and cIMT traits. Conclusions: Genetic factors have a substantial role in the longitudinal change of HR, MAP and cIMT; however, the influence of unique environmental factors remains relevant. Further studies should better elucidate whether epigenetic mechanisms have a role in influencing the stability of the investigated traits over time

    [18F]LW223 has low non-displaceable binding in murine brain, enabling high sensitivity TSPO PET imaging

    Get PDF
    Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003–0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∌15–20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90–120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer
    • 

    corecore