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ABSTRACT 

Background: Heart rate (HR), mean arterial pressure (MAP) and carotid intima-media thickness 

(cIMT) are moderately heritable cardiovascular traits, but the environmental effects on the 

longitudinal change of their heritability have never been investigated.  

Methods: 368 Italian and Hungarian twins (107 monozygotic, 77 dizygotic) underwent 

oscillometric measurement and B-mode sonography of bilateral carotid arteries in 2009/10 and 

2014. Within-individual/cross-study wave, cross-twin/within-study wave and cross-twin/cross-

study wave correlations were estimated, and bivariate Cholesky models were fitted to decompose 

the total variance at each wave and covariance between study waves into additive genetic, shared 

and unique environmental components. 

Results: For each trait, a moderate longitudinal stability was observed, with within-

individual/cross-wave correlations of 0.42 (95% CI: 0.33–0.51) for HR, 0.34 (95% CI: 0.24–

0.43) for MAP, and 0.23 (95% CI: 0.12–0.33) for cIMT. Cross-twin/cross-wave correlations in 

monozygotic pairs were all significant and substantially higher than the corresponding dizygotic 

correlations. Genetic continuity was the main source of longitudinal stability, with across-time 

genetic correlations of 0.52 (95% CI: 0.29–0.71) for HR, 0.56 (95% CI: 0.31–0.81) for MAP, 

and 0.36 (95% CI: 0.07–0.64) for cIMT. Overlapping genetic factors explained respectively 

57%, 77%, and 68% of the longitudinal covariance of the HR, MAP and cIMT traits. 

Conclusions: Genetic factors have a substantial role in the longitudinal change of HR, MAP and 

cIMT; however, the influence of unique environmental factors remains relevant. Further studies 

mailto:laszlo.szalontai.med@gmail.com
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should better elucidate whether epigenetic mechanisms have a role in influencing the stability of 

the investigated traits over time. 

Key words: cardiovascular arterial stiffness, epigenetics, genetics 

 

 

Introduction 

Each year, cardiovascular disease (CVD) causes 3.9 million deaths, accounting for almost 

half of all deaths in Europe [1].  

Some of the most commonly used non-invasive methods to assess CVD risk include 

cardiovascular measures such as heart rate (HR), mean arterial pressure (MAP), and carotid 

intima-media thickness (cIMT). A considerable number of epidemiological studies have reported 

a strong association between elevated HR and cardiovascular risk, and this association appears to 

be independent of other major risk factors for atherosclerosis [2]. These studies suggest that HR 

does not merely predict outcome, but that elevated heart rate may be a true cardiovascular risk 

factor.  

Mean arterial pressure is a steady component of the blood pressure (BP) curve. The two 

main determining factors of MAP are cardiac output and peripheral vascular resistance, which 

are regulated by a network of interacting physiological pathways involving extracellular fluid 

volume homeostasis, cardiac contractility and vascular tone through renal, neural and endocrine 

systems [4]. cIMT is a marker of subclinical atherosclerosis normally increasing with age and 

generally related to the male gender. Approximately 20% to 30% of cerebral strokes are thought 

to be the result of ischemia from extracranial carotid stenosis due to atherosclerosis [5]. While 

HR, BP, and cIMT have been linked to environmental factors, cross-sectional twin and family 

studies have also shown a strong genetic component [6–12]. However, being complex traits, 

environmental factors are likely to play an important role in the longitudinal modification of the 

genetic influence but, the timespan over which these changes take effect is unclear [13, 14]. 

The environmental effects on the longitudinal change of HR, MAP and cIMT heritability 

have never been investigated. Significant changes in associations with genetic components over 

a considerably long timespan (for example, 5 years) would suggest higher importance of gene 

environment interaction. The aim of this longitudinal twin study was to investigate genetic and 
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environmental influences on the stability of HR, MAP, and cIMT as CVD defining traits to 

provide an insight into whether environmental interventions might have a substantial beneficial 

effect. 

 

 

Methods 

Patients 

In 2009/2010, 662 twins previously enrolled in the Italian and Hungarian Twin Registries 

were recruited in the “International twin study on atherosclerotic traits” (Wave 1) [8]. Of these, 

368 participated in a second study wave (2014), with 294 (44.4%) not participating in the follow-

up investigation. Attrition is explained in part by death of participants after Wave 1, health 

reasons, loss to follow-up due to a change of address, and the fact that only complete twin pairs 

could be enrolled in the study. All patients were Caucasian ethnicity. No significant differences 

in zygosity as well as in several baseline characteristics (such as educational level, systolic and 

diastolic BP, smoking habits, diabetes, hypertension and cardiac disease and MAP) were found 

between those who took part in Wave 2 and those who were not followed up. However, 

participants who were followed up were significantly older, drank more coffee or alcohol, had 

higher body mass index (BMI) and showed lower heart rate at baseline compared to those who 

were not followed up. The Italian twins were residents of Rome, Padua, Perugia or Terni, while 

Hungarian twins lived in Budapest or in the province. Exclusion criteria at both visits were being 

pregnant at the time of the visit, prior CVDs or surgeries that might interfere with the 

investigated phenotypes, and acute infection occurring 2 weeks prior to their visit. Twins were 

examined, and data were collected at the local university hospitals. All participants signed an 

informed consent form in acceptance of entering the study. This observational study was 

approved by the Ethics Committee of the Istituto Superiore di Sanità as part of the Italian Twin 

Registry research activities, and the study was performed in accordance with the declaration of 

Helsinki. 

 

Ethics approval and consent to participate 

The study was approved by the Ethics Committee Semmelweis University TUKEB 

29/2009, and the committee’s reference number is ETT TUKEB 58401/2012/EKU (828/PI/12). 
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Data collection and measures 

Heart rate, MAP, aortic blood pressure (SBPao), cIMT, and BMI were recorded by 

oscillometric measurement, B-mode sonography of bilateral carotid arteries and bioelectrical 

impedance analysis (OMRON) in 2009 and in 2014, using the same devices. Prior to 

measurements, participants were requested to refrain  from smoking for at least 3 h, from eating 

for at least 1 h, and from drinking alcohol or coffee for at least 12 h. Subjects were asked not to 

speak during the measurements. The HR and MAP measurements were obtained after at least 10 

min of resting in supine position using a previously validated [15], brachial cuff-based 

oscillometric device (Tensiomed Arteriograph, Medexpert Ltd., Budapest, Hungary). Mean 

arterial pressure was calculated as DBP + 1/3 (SBP – DBP). B-mode ultrasound was performed 

using high-resolution color-coded duplex sonography scanners (Esaote MyLab70 in Rome, Italy; 

Sonoscape S8 in Perugia, Italy; Toshiba Aplio XG in Padua, Italy; Esaote MyLab60 in Terni, 

Italy; Philips iU22 in Hungary) with high-frequency (12 MHz) linear probes. Carotid arteries 

were examined by the same reader bilaterally from the supraclavicular fossa to the 

submandibular angle, including common carotid artery (CCA), carotid bulb, and origin of both 

internal and external carotid arteries (ICA and ECA). Intima–media thickness was defined 

according to the Mannheim consensus [16]. IMT was measured 2 to 3 cm before the carotid 

bifurcation on the far wall. In cases of the presence of a carotid plaque, an area nearby without 

plaque was measured. Afterwards, cIMT was measured by semiautomated software online or 

offline in the saved images, or by calipers. Information on risk factors, chronic diseases, 

medications, and any other clinically relevant condition were collected by self-reported 

questionnaires. Twin zygosity was assessed by a self-reported questionnaire, filled out by each 

twin, regarding physical differences and similarities during childhood [17, 18]. 

 

Statistical analysis 

Descriptive statistics (percentage distributions and mean values with their corresponding 

standard deviations) were produced for the overall sample and by zygosity at Wave 1 and Wave 

2. Since monozygotic (MZ) twins are genetically identical and dizygotic (DZ) twins who share, 

on average, 50% of the genes, and both MZ and DZ twins are exposed to the same environment 

especially during childhood, a higher correlation of the examined traits in MZ than in DZ pairs 
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suggests a contribution of genetic factors to the trait expression. The role of genetic and 

environmental factors in the expression of each trait was inferred by a comparison of 

“crosstwin/within-wave” correlations (i.e. between twin 1 and twin 2 at a given wave) between 

MZ and DZ pairs. Longitudinal phenotypic correlation (“within-individual/cross-wave” 

correlation, i.e. between Wave 1 and Wave 2 for twins as individuals) was calculated to 

investigate the stability of each trait over time. “Cross-twin/cross-wave” correlation (i.e. between 

twin 1 at a given wave and twin 2 at a different wave) was calculated in order to assess the 

stability of genetic and environmental effects across the two visits; greater values of such 

correlation for MZ compared to DZ pairs are interpreted as a genetic stability between Wave 1 

and Wave 2. Bivariate Cholesky decomposition was performed for each trait to estimate genetic 

and environmental contributions to the variance at each wave and to the covariance between 

waves under the full and best model. The χ2 test was used to select the best fitting model 

according to parsimonious criteria [19]. The contribution to variance and covariance can be 

decomposed in three main effects: (i) additive genetic component (A), due to additive effects of 

alleles at each contributing genetic locus; (ii) shared environmental component (C), attributable 

to environmental events common to both members of a twin pair; (iii) unique environmental 

component (E), which results from environmental exposures not shared by members of a twin 

pair, including measurement errors. Genetic and environmental variance and covariance 

components were expressed as percentages of the total observed variance/covariance. Therefore, 

the standardized genetic variance component, called heritability, was defined as the proportion of 

variance of a single trait (at a given wave) attributable to genetic influences. Furthermore, the 

standardized genetic covariance, called bivariate heritability, was defined as the proportion of 

phenotypic correlation (between waves) explained by common genetic influences at Wave 1 and 

Wave 2. Finally, genetic and environmental correlations were estimated to assess the extent to 

which the same genes and environments affected the traits across visits. All estimated parameters 

were adjusted by age, gender, country, BMI at baseline and, when necessary, by SBPao at 

baseline based on the Framingham Heart Study [20]. Descriptive statistics were obtained using 

the STATA Software, release 13. In addition, correlation estimation and bivariate Cholesky 

decomposition were performed using the Mx software [21]. 
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Results 

A total of 214 MZ twins and 154 DZ twins were included in the analysis (Table 1): 

59.8% of the sample was recruited in Italy and about one-third of the twins were male (34.8%). 

The mean age at first visit was 51.9 years (range 19–73). No significant differences between 

zygosity groups for HR, MAP and cIMT were found. Within-pair similarity in MZ twin pairs 

was greater than that observed in DZ pairs for all the traits (Table 2). Phenotypic correlations 

between the first and second visits for HR, MAP and cIMT were 0.42, 0.34, and 0.23, 

respectively. Cross-twin/cross-wave correlations were higher in MZ twin pairs (range 0.15–0.27) 

than in DZ pairs (range 0.09–0.16). The highest difference between MZ and DZ twin 

correlations was observed for mean arterial pressure (MZ: 0.27 and DZ: 0.11). Under the best 

model (AE), the variability of HR and MAP at first and second visits was explained, in similar 

proportions, by genetic (A from 0.48 to 0.45) and unique environmental influences (E from 0.52 

to 0.55; Table 3). Unique environmental influences on cIMT expression decreased between the 

first visit (E = 0.68) and the second visit (E = 0.42), whereas genetic effects increased from 0.32 

to 0.58 between the two visits. For longitudinal changes in HR, proportions of covariance were 

explained by genetic and environmental influences were A = 0.57 and E = 0.43, respectively. 

Genetic factors involved in MAP and cIMT expression accounted for, respectively, 77% and 

68% of the longitudinal covariance of the traits; the contribution of nonshared exposures to the 

stability of the traits over time was quite modest (E = 0.23 and 0.32). Familial environmental 

influences did not contribute significantly to the longitudinal stability and change of HR, MAP 

and cIMT; indeed, the exclusion of C component had no effect in the model fit of any of the 

three phenotypes (p > 0.05). Many of the same genes were involved in the expression of the 

observed traits over time (genetic correlation, rg: HR = 0.52, MAP = 0.56 and cIMT = 0.36), 

while different unique environmental factors acted across visits (environmental correlation, re: 

HR = 0.34, MAP = 0.15 and cIMT = 0.14). 

 

 

Discussion 

In this study, substantial influences of genetic background on phenotypic correlations of 

all studied phenotypes were revealed over time. Moreover, data herein, highlighted that shared, 
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primarily familial, environmental influences do not contribute significantly to the longitudinal 

stability and change of HR, MAP, and cIMT. 

 

Heart rate 

Stress and depression are among the main factors raising HR [22]. Environmental factors 

associated with higher HR can be divided in two groups. The first one includes lifestyle choices 

such as alcohol consumption [23], smoking [24], absence of exercise, and higher BMI [25]. The 

second one refers to occupation related exposure such as exposure to particulate matter, several 

chemical components, electromagnetic fields (EMF), vibrating tools, psychosocial stress, long 

working hours, and fatigue [26]. A large body of evidence ranging from epidemiologic to 

genome-wide linkage studies, suggests that in addition to the effect of environmental factors on 

HR, some features of HR and HR variability (HRV) can be transmitted over generations because 

of the influence of genetic factors. The Framingham Heart Study in 2002 and the Examination of 

the “unified database for human genome mapping” provided evidence for distinct HRV 

quantitative trait loci on chromosomes 15 and 2 [27]. There were interesting candidate genes 

related to the autonomic nervous system and HRV around the region of interest on chromosome 

2 [27]. A recent GWAS cohort by Eppinga et al. [28] identified 46 novel loci associated with 

resting HR and hypothesized that either the genetic variants exerted their effects via HR on 

mortality directly, or the genetic variants shared an underlying biology, both increasing HR and 

mortality risk. The present study provided further evidence on the role of genetic influence on 

HR by finding that the overall effect of the known environmental factors accounted for 52% to 

55% of the variance. This is in accordance with a previous Danish study that demonstrated lower 

heritability (23% to 27%) while adjusting for age, gender, BMI, diabetes, hypertension, 

pulmonary function, smoking, physical activity and zygosity [6]. The current study also 

indicated that these known genetic and environmental factors had a modest but stable effect over 

time. Phenotypic correlation between the first and second visits for HR showed a moderate 

stability of the trait across time. This may suggest that environment played a non-significant 

effect on genetic expression through gene-environment interaction over a 5-year period. 

 

Mean arterial pressure 
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Factors that increase MAP include high BMI, age, short sleep time and/or sleep apnea 

syndrome, high sodium intake, smoking [29, 30], stress, and clinically related diseases such as 

diabetes and chronic kidney disease [31]. Studies have shown that environmental influences 

explain about 30–50% of the variance in MAP [32, 33]. Cultural heritability, comprising a 

constellation of factors such as lifestyle and dietary habits, might explain an additional 10% [32, 

33]. A 2016 study showed that the majority of patients diagnosed with hypertension had high 

dietary sodium intake and low physical activity with high BMI and abdominal obesity [34]. 

Furthermore, a study by Małyszko et al. [35] found high prevalence and profound vitamin D 

deficiency in heart failure patients. Genetic heritability is estimated to account for about 40% of 

BP variance (ranging from 31% to 68%, depending on the study) [32, 33]. Some residual 

proportion of variance (estimated at about 10%) remains unknown. However, the genetic 

determinants are probably highly heterogeneous, which poses exceptional challenges to 

identification of the underlying genes. Burello et al. [36] described 43 single-nucleotide 

polymorphisms (SNP) variants, in a recent GWAS study, with each SNP affecting systolic and 

diastolic BP by 1.0 and 0.5 mmHg, respectively. In 2017 one of the largest GWAS research 

studies to this date, that used the 1000 Genomes Project-based imputation in 150,134 European 

ancestry individuals reported 8 loci of the genome not previously connected to BP regulation and 

increasing the number of genes to 48 as candidates for priority follow-up [37]. Epigenetic 

changes, such as DNA methylation, histone modification and non-coding RNAs, have been 

increasingly recognized as important players in BP regulation and may justify a further part of 

missing heritability [36]. However, to this end, the longitudinal role of these effects on BP 

heritability remained unclear. In recent twin studies, MAP heritability ranged between 46% and 

47%, which is in line with the magnitude of the previous heritability results of BP traits [8]. 

Based on the phenotypic correlation between the two study waves, the present study found a low 

to moderate longitudinal stability of MAP, with cross-twin/cross-wave correlations giving a first 

indication of genetic and environmental influences on the detected stability. In the current study, 

the higher correlation observed in MZ twin pairs compared to DZ pairs suggests that genes 

mainly contribute to the stability of the trait over time. 

 

Carotid IMT 
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Age and BMI are the most influential environmental factors on cIMT increase, followed 

by pulse pressure, gender (higher cIMT values in men, although gender difference is partly 

attributable to differences in carotid lumen diameter), waist-hip ratio, total cholesterol, low-

density lipoprotein cholesterol, triglycerides, number of pack-years of smoking, and lumen 

diameter of the carotid artery [38]. The ARYA Study showed a linear trend with increased cIMT 

after adjusting the total pack-years of smoking for age and gender [38]. cIMT increases gradually 

and significantly with the number of cardiovascular risk factors mentioned above. In contrast, 

high-density lipoprotein cholesterol level is inversely associated with cIMT [39]. The Italian 

working group previously showed a genetic contribution ranging from 41% to 65% across the 

different carotid segments [9]. In a recent study Cecelja et al. [40] no association was found 

between longitudinal progression (5 years) of carotid artery pulse pressure and carotid IMT or 

carotid dilation and carotid IMT. This suggests that both pulse pressure and dilation are heritable 

but independent of IMT. Based on the present results, phenotypic correlation between the two 

waves suggests a moderate, significant longitudinal stability of cIMT. Moreover, the current data 

highlighted that shared environment (primarily familial exposures shared by both twins, such as 

dietary habits in childhood, parental socioeconomic status, etc.) did not contribute significantly 

to the longitudinal stability and change of cIMT, while unique environment had a substantial 

influence. 

 

Limitations of the study 

The present study has two limitations. First, the study was carried out in samples from 

different countries with different prevalence of hypertension, hypercholesterolemia, genetic 

background and other risk factors. However, this allowed us to study a more diverse sample. 

Second, preventive interventions or treatments might have affected the findings. However, 

conducting a sensitivity analysis excluding twins that changed treatment profile (i.e. not treated 

at baseline and treated at second wave or vice versa), the results were similar, suggesting that 

treatment likely had a negligible effect on the genetic component. 

 

 

Conclusions 
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The current study of a relatively large twin cohort had the strength of being conducted by 

the same researchers and devices in all subjects in both study waves, using a standardized 

measurement procedure. This study revealed substantial influences of genetic background on 

longitudinal stability of all studied phenotypes over time. Moreover, data herein highlighted that 

shared, primarily familial, environmental influences do not contribute significantly to 

longitudinal stability and change of HR, MAP and cIMT. The present findings suggest that 

unique environmental, epigenetic changes may have a lower but considerable role in the 

expression of these CVD defining traits over a 5-year period due to genetic stability. 
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Table 1. Demographic, clinical characteristics and measures by zygosity and time. 

 Monozygotic twins   Dizygotic twins  

 
Wave 1 

(2009/10) 

Wave 2 

(2014) 

 Wave 1 

(2009/10) 

Wave 2 

(2014) 

Subjects, N 214 214 
 

154 154 

Age, years  51.45 ± 13.25 56.11 ± 13.40 
 

52.45 ± 12.19 57.12 ± 12.26 

Gender, Male 35.5% –  33.8% – 

Country: 

     Hungary 

     Italy 

 

46.7% 

53.3% 

 

– 

– 

  

31.2% 

68.8% 

 

– 

– 

Smoke: 

    Never smoker 

    Former smoker — Current smoker 

 

59.7% 

40.3% 

 

59.5% 

40.5% 

 
 

50.0% 

50.0% 

 

48.3% 

51.7% 

Body mass index [kg/m2] 26.20 ± 4.45 26.55 ± 4.50  26.86 ± 4.59 27.06 ± 4.86 

Heart rate 69.91 ± 11.27 67.14 ± 9.80  69.27 ± 9.66 65.25 ± 8.77 

Mean arterial pressure [mmHg] 94.24 ± 12.53 93.12 ± 11.48  92.97 ± 12.20 93.50 ± 13.05 

Carotid intima media Thickness [mm] 0.71 ± 0.25 0.69 ± 0.19 
 

0.71 ± 0.20 0.74 ± 0.22 

Hyperlipidemia 71.1% 65.2% 
 

69.5% 66.2% 

Brachial systolic blood pressure [mmHg] 128.58 ± 17.26 126.39 ± 16.68  127.13 ± 16.63 126.66 ± 17.35 

Brachial diastolic blood pressure [mmHg] 77.01 ± 11.29 76.52 ± 9.96 
 

76.44 ± 9.99 76.82 ± 11.81 

Data are expressed as mean ± standard deviation or percentage (%). 
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Table 2. Intraclass and cross-twin/cross-time correlations by zygosity. 

  

Phenotypic 

correlation 

(95% CI) 

Correlations (95% CI) 

   Monozygotic Dizygotic 

     

HR*     

Visit 1–Visit 2  Within-individual/cross-time correlation 0.42 (0.33–0.51)   

Visit 1  Cross-twin/within-time correlation  0.47 (0.33–0.59) 0.27 (–0.02–0.49) 

Visit 2  Cross-twin/within-time correlation  0.44 (0.28–0.57) 0.30 (0.06–0.50) 

Visit 1–Visit 2  Cross-twin/cross-time correlation  0.24 (0.11–0.35) 0.16 (–0.05–0.33) 

     

MAP*     

Visit 1–Visit 2  Within-individual/cross-time correlation 0.34 (0.24–0.43)   

Visit 1  Cross-twin/within-time correlation  0.44 (0.27–0.57) 0.37 (0.17–0.54) 

Visit 2  Cross-twin/within-time correlation  0.50 (0.33–0.64) 0.10 (–0.10–0.28) 

Visit 1–Visit 2  Cross-twin/cross-time correlation  0.27 (0.14–0.39) 0.11 (–0.05–0.26) 

     

CCA IMT**     

Visit 1–Visit 2  Within-individual/cross-time correlation 0.23 (0.12–0.33)   

Visit 1  Cross-twin/within-time correlation  0.32 (0.23–0.46) 0.13 (–0.01–0.37) 

Visit 2  Cross-twin/within-time correlation  0.59 (0.48–0.65) 0.24 (0.04–0.42) 

Visit 1–Visit 2  Cross-twin/cross-time correlation  0.15 (0.02–0.27) 0.09 (–0.09–0.17) 
HR: heart rate; MAP: mean arterial pressure; CCA: common carotid artery; IMT: intima media thickness; SBPao: aortic systolic blood pressure; BMI: body mass index. 

* Covariates included in the model: age, gender, Country, BMI;  ** Covariates included in the model: age, gender, Country, SBPao, BMI; 95% CI:95% Confidence intervals 
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Table 3. Standardized Parameter Estimates under the best-fitting models. 

 
Standardized variance/covariance 

components (95% CI) 
 Model fit indices# 

 
Correlations (95% CI) 

 A E  Χ2 Δdf P 
 Genetic correlation, 

rg 

Environmental 

correlation, re 

          

HR*          

HR Visit 1 0.48 (0.34–0.59) 0.52 (0.41–0.66)        

HR Visit 2 0.45 (0.31–0.57) 0.55 (0.43–0.69)        

HR Visit 1/Visit 2 0.57 (0.32–0.78) 0.43 (0.22–0.68)  0.49 3 0.92  0.52 (0.29–0.71) 0.34 (0.17–0.48) 

          

MAP*          

MAP Visit 1 0.47 (0.33–0.59) 0.53 (0.41–0.67)        

MAP Visit 2 0.46 (0.28–0.60) 0.54 (0.40–0.72)        

MAP Visit 1/Visit 2 0.77 (0.45–1.00) 0.23 (0–0.55)  2.84 3 0.42  0.56 (0.31–0.81) 0.15 (0–0.32) 

          

CCA IMT**            

CCA IMT Visit 1 0.32 (0.17–0.46) 0.68 (0.54–0.83)        

CCA IMT Visit 2 0.58 (0.44–0.69) 0.42 (0.31–0.56)        

CCA IMT Visit 1/Visit 

2 

0.68 (0.18–1.00) 0.32 (0–0.82)  
0 3 1.00 

 0.36 (0.07–0.64) 0.14 (0–0.31) 

          
A — additive genetic variance; E — unshared environmental variance; CI — confidence intervals; CCA — common carotid artery; HR — heart rate; MAP — mean arterial 

pressure; IMT — intima media thickness  

#Full model was ACE 

χ2 = (–2log-likelihood sub-model)–(–2log-likelihood full model); Δdf = (df sub-model)–(df full model)  

*Covariates included in the model: age, gender, country, body mass index 

**Covariates included in the model: age, gender, country, aortic systolic blood pressure, body mass index 
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