121 research outputs found

    Mining Small Routine Clinical Data: A Population Pharmacokinetic Model and Optimal Sampling Times of Capecitabine and its Metabolites

    Get PDF
    Purpose: The present study was performed to demonstrate that small amounts of routine clinical data allow to generate valuable knowledge. Concretely, the aims of this research were to build a joint population pharmacokinetic model for capecitabine and three of its metabolites (5-DFUR, 5-FU and 5-FUH2) and to determine optimal sampling times for therapeutic drug monitoring. Methods: We used data of 7 treatment cycles of capecitabine in patients with metastatic colorectal cancer. The population pharmacokinetic model was built as a multicompartmental model using NONMEM and was internally validated by visual predictive check. Optimal sampling times were estimated using PFIM 4.0 following D-optimality criterion. Results: The final model was a multicompartmental model which represented the sequential transformations from capecitabine to its metabolites 5-DFUR, 5-FU and 5-FUH2 and was correctly validated. The optimal sampling times were 0.546, 0.892, 1.562, 4.736 and 8 hours after the administration of the drug. For its correct implementation in clinical practice, the values were rounded to 0.5, 1, 1.5, 5 and 8 hours after the administration of the drug. Conclusions: Capecitabine, 5-DFUR, 5-FU and 5-FUH2 can be correctly described by the joint multicompartmental model presented in this work. The aforementioned times are optimal to maximize the information of samples. Useful knowledge can be obtained for clinical practice from small databases

    Generation of two transgene-free human iPSC lines from CD133+ cord blood cells

    Get PDF
    We have generated two human induced pluripotent stem cell (iPSC) lines from CD133+ cells isolated from umbilical cord blood (CB) of a female child using non-integrative Sendai virus. Here we describe the complete characterization of these iPSC lines: PRYDi-CB5 and PRYDi-CB40

    Collaborative action research through technologically mediated agoras.

    Get PDF
    ABSTRACT: The study presented in this article forms part of a wider project promoting collaboration between junior researchers from different universities with the objective of rethinking and improving teaching practice in relation to the use of technology. The article describes research carried out during the 2012/13 academic year aimed at developing collaborative action research through technologically mediated agoras involving students from three Spanish universities. The main results of this study show that junior researchers improved their teaching practice through technologically mediated inside and outside agoras. In addition, the transformation of university classrooms into agoras enabled the negotiated reconstruction of knowledge for the analysis of good practice in the use of technology. Likewise, these agoras helped reduce limitations by breaking down the barriers of time, distance and resources for sharing findings and limitations between junior researchers. Furthermore, they pave the way for improvements and their implementation in learning processes during initial teacher training

    Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma

    Get PDF
    Therapies based on immune checkpoint inhibitors (ICPI) have yielded promising albeit limited results in patients with hepatocellular carcinoma (HCC). Vaccines have been proposed as combination partners to enhance response rates to ICPI. Thus, we analyzed the combined effect of a vaccine based on the TLR4 ligand cold-inducible RNA binding protein (CIRP) plus ICPI. Mice were immunized with vaccines containing ovalbumin linked to CIRP (OVA-CIRP), with or without ICPI, and antigen-specific responses and therapeutic efficacy were tested in subcutaneous and orthotopic mouse models of liver cancer. OVA-CIRP elicited polyepitopic T-cell responses, which were further enhanced when combined with ICPI (anti-PD-1 and anti-CTLA-4). Combination of OVA-CIRP with ICPI enhanced ICPI-induced therapeutic responses when tested in subcutaneous and intrahepatic B16-OVA tumors, as well as in the orthotopic PM299L HCC model. This effect was associated with higher OVA-specific T-cell responses in the periphery, although many tumor-infiltrating lymphocytes still displayed an exhausted phenotype. Finally, a new vaccine containing human glypican-3 linked to CIRP (GPC3-CIRP) induced clear responses in humanized HLA-A2.01 transgenic mice, which increased upon combination with ICPI. Therefore, CIRP-based vaccines may generate anti-tumor immunity to enhance ICPI efficacy in HCC, although blockade of additional checkpoint molecules and immunosuppressive targets should be also considered

    IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination

    Get PDF
    Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL- 10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL-10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL-10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset

    The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae

    Get PDF
    The Brucella BvrR/BvrS two-component regulatory system is homologous to the ChvI/ChvG systems of Sinorhizobium meliloti and Agrobacterium tumefaciens necessary for endosymbiosis and pathogenicity in plants. BvrR/BvrS controls cell invasion and intracellular survival. Probing the surface of bvrR and bvrS transposon mutants with monoclonal antibodies showed all described major outer membrane proteins (Omps) but Omp25, a protein known to be involved in Brucella virulence. Absence of Omp25 expression was confirmed by two-dimensional electrophoresis of envelope fractions and by gene reporter studies. The electrophoretic analysis also revealed reduction or absence in the mutants of a second set of protein spots that by matrix-assisted laser desorption ionization MS and peptide mass mapping were identified as a non-previously described Omp (Omp3b). Because bvrR and bvrS mutants are also altered in cell-surface hydrophobicity, permeability, and sensitivity to surf ace-targeted bactericidal peptides, it is proposed that BvrR/BvrS controls cell envelope changes necessary to transit between extracellular and intracellular environments. A genomic search revealed that Omp25 (Omp3a) and Omp3b belong to a family of Omps of plant and animal cell-associated alpha-Proteobacteria, which includes Rhizobium leguminosarum RopB and A. tumefaciens AopB. Previous work has shown that RopB is not expressed in bacteroids, that AopB is involved in tumorigenesis, and that dysfunction of A. tumetaciens ChvI/ChvG alters surface properties. It is thus proposed that the BvrR/BvrS and Omp3 homologues of the cell-associated a-Proteobacteria play a role in bacterial surface control and host cell interactions

    A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo

    Get PDF
    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer

    Stratification and therapeutic potential of PML in metastatic breast cancer.

    Get PDF
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259
    corecore