121 research outputs found
Control of lipid organization and actin assembly during clathrin-mediated endocytosis by the cytoplasmic tail of the rhomboid protein Rbd2.
Clathrin-mediated endocytosis (CME) is facilitated by a precisely regulated burst of actin assembly. PtdIns(4,5)P2 is an important signaling lipid with conserved roles in CME and actin assembly regulation. Rhomboid family multipass transmembrane proteins regulate diverse cellular processes; however, rhomboid-mediated CME regulation has not been described. We report that yeast lacking the rhomboid protein Rbd2 exhibit accelerated endocytic-site dynamics and premature actin assembly during CME through a PtdIns(4,5)P2-dependent mechanism. Combined genetic and biochemical studies showed that the cytoplasmic tail of Rbd2 binds directly to PtdIns(4,5)P2 and is sufficient for Rbd2's role in actin regulation. Analysis of an Rbd2 mutant with diminished PtdIns(4,5)P2-binding capacity indicates that this interaction is necessary for the temporal regulation of actin assembly during CME. The cytoplasmic tail of Rbd2 appears to modulate PtdIns(4,5)P2 distribution on the cell cortex. The syndapin-like F-BAR protein Bzz1 functions in a pathway with Rbd2 to control the timing of type 1 myosin recruitment and actin polymerization onset during CME. This work reveals that the previously unstudied rhomboid protein Rbd2 functions in vivo at the nexus of three highly conserved processes: lipid regulation, endocytic regulation, and cytoskeletal function
Repo-Man Controls a Protein Phosphatase 1-Dependent Threshold for DNA Damage Checkpoint Activation
SummaryBackgroundIn response to DNA damage, cells activate checkpoints to halt cell-cycle progression and prevent genomic instability. Checkpoint activation induced by DNA double-strand breaks (DSB) is dependent on the ATM kinase, a master regulator of the DNA damage response (DDR) that is activated through autophosphorylation and monomerization.ResultsHere we show that either protein phosphatase 1 or 2A is sufficient to suppress activation of the DDR and that simultaneous inhibition of both phosphatases fully activates the response. PP1-dependent DDR regulation is mediated by its chromatin-targeting subunit, Repo-Man. Studies in Xenopus egg extracts demonstrate that Repo-Man interacts with ATM and PP1 through distinct domains, leading to PP1-dependent regulation of ATM phosphorylation and activation. Consequently, the level of Repo-Man determines the activation threshold of the DNA damage checkpoint. Repo-Man interacts and extensively colocalizes with ATM in human cells. Expression of wild-type, but not PP1 binding-deficient, Repo-Man attenuates DNA damage-induced ATM activation. Moreover, Repo-Man dissociates from active ATM at DNA damage sites, suggesting that activation of the DDR involves removal of inhibitory regulators. Analysis of primary tumor tissues and cell lines demonstrates that Repo-Man is frequently upregulated in many types of cancers. Elevated Repo-Man expression blunts DDR activation in precancerous cells, whereas knockdown of Repo-Man in malignant cancer cells resensitizes the DDR and restrains growth in soft agar.ConclusionsWe report essential DDR regulation mediated by Repo-Man-PP1 and further delineate underlying mechanisms. Moreover, our evidence suggests that elevated Repo-Man contributes to cancer progression
Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor–mediated metaphase arrest
In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint
Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation
AbstractBackground: The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90Rsk, which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90Rsk involves components of the spindle assembly checkpoint.Results: xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90Rsk, restores the activation of Bub1 in the presence of U0126. Moreover, purified p90Rsk phosphorylates Bub1 in vitro and increases its protein kinase activity.Conclusions: Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90Rsk, is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90Rsk and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90Rsk
Synthesis and biological evaluation of new salvinorin A analogues incorporating natural amino acids
The synthesis and in vitro evaluation of a new series of salvinorin A analogues substituted at the C(2) position with natural amino acids is reported. Compound 12, containing Val, displayed high affinity and full agonist activity at the kappa-opioid receptor. Analogues with bulky and/or aromatic residues were inactive, showing the importance of size and electronegativity of C(2)-substituents for binding affinity of salvinorin A derivatives
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature
The conditional use of actin during clathrin-mediated endocytosis in mammalian cells suggests that the cell controls whether and how actin is used. Using a combination of biochemical reconstitution and mammalian cell culture, we elucidate a mechanism by which the coincidence of PI(4,5)P2 and PI(3)P in a curved vesicle triggers actin polymerization. At clathrin-coated pits, PI(3)P is produced by the INPP4A hydrolysis of PI(3,4)P2, and this is necessary for actin-driven endocytosis. Both Cdc42⋅guanosine triphosphate and SNX9 activate N-WASP–WIP- and Arp2/3-mediated actin nucleation. Membrane curvature, PI(4,5)P2, and PI(3)P signals are needed for SNX9 assembly via its PX–BAR domain, whereas signaling through Cdc42 is activated by PI(4,5)P2 alone. INPP4A activity is stimulated by high membrane curvature and synergizes with SNX9 BAR domain binding in a process we call curvature cascade amplification. We show that the SNX9-driven actin comets that arise on human disease–associated oculocerebrorenal syndrome of Lowe (OCRL) deficiencies are reduced by inhibiting PI(3)P production, suggesting PI(3)P kinase inhibitors as a therapeutic strategy in Lowe syndrome.J.L. Gallop is supported by a Wellcome Trust Research Career Development Fellowship (grant WT095829AIA). F. Daste, A. Walrant, J.R. Gadsby, and J. Mason are supported by an H2020 European Research Council Starting Grant (281971) awarded to J.L. Gallop. Gurdon Institute funding is provided by the Wellcome Trust (grant 092096) and Cancer Research UK (grant C6946/A14492). The Swedish Medical Research Council and the Swedish Foundation for Strategic Research supported the work of M.R. Holst and R. Lundmark. S.F. Lee is funded by a Royal Society University Research Fellowship (grant UF120277). M. Mettlen is funded by grant MH73125 to Sandra L. Schmid (University of Texas Southwestern Medical Center)
Human Hepatitis B Virus Production in Avian Cells Is Characterized by Enhanced RNA Splicing and the Presence of Capsids Containing Shortened Genomes
Experimental studies on hepatitis B virus (HBV) replication are commonly done with human hepatoma cells to reflect the natural species and tissue tropism of the virus. However, HBV can also replicate, upon transfection of virus coding plasmids, in cells of other species. In such cross-species transfection experiments with chicken LMH hepatoma cells, we previously observed the formation of HBV genomes with aberrant electrophoretic mobility, in addition to the those DNA species commonly seen in human HepG2 hepatoma cells. Here, we report that these aberrant DNA forms are mainly due to excessive splicing of HBV pregenomic RNA and the abundant synthesis of spliced DNA products, equivalent to those also made in human cells, yet at much lower level. Mutation of the common splice acceptor site abolished splicing and in turn enhanced production of DNA from full-length pgRNA in transfected LMH cells. The absence of splicing made other DNA molecules visible, that were shortened due to the lack of sequences in the core protein coding region. Furthermore, there was nearly full-length DNA in the cytoplasm of LMH cells that was not protected in viral capsids. Remarkably, we have previously observed similar shortened genomes and non-protected viral DNA in human HepG2 cells, yet exclusively in the nucleus where uncoating and final release of viral genomes occurs. Hence, two effects reflecting capsid disassembly in the nucleus in human HepG2 cells are seen in the cytoplasm of chicken LMH cells
Act In case of Depression: The evaluation of a care program to improve the detection and treatment of depression in nursing homes. Study Protocol
Contains fulltext :
95616.pdf (publisher's version ) (Open Access)BACKGROUND: The aim of this study is evaluating the (cost-) effectiveness of a multidisciplinary, evidence based care program to improve the management of depression in nursing home residents of somatic and dementia special care units. The care program is an evidence based standardization of the management of depression, including standardized use of measurement instruments and diagnostical methods, and protocolized psychosocial, psychological and pharmacological treatment. METHODS/DESIGN: In a 19-month longitudinal controlled study using a stepped wedge design, 14 somatic and 14 dementia special care units will implement the care program. All residents who give informed consent on the participating units will be included. Primary outcomes are the frequency of depression on the units and quality of life of residents on the units. The effect of the care program will be estimated using multilevel regression analysis. Secondary outcomes include accuracy of depression-detection in usual care, prevalence of depression-diagnosis in the intervention group, and response to treatment of depressed residents. An economic evaluation from a health care perspective will also be carried out. DISCUSSION: The care program is expected to be effective in reducing the frequency of depression and in increasing the quality of life of residents. The study will further provide insight in the cost-effectiveness of the care program. TRIAL REGISTRATION: Netherlands Trial Register (NTR): NTR1477
An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis
Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone
- …