1,860 research outputs found

    On Heterotic/Type I Duality in d=8

    Get PDF
    We discuss heterotic corrections to quartic internal U(1) gauge couplings and check duality by calculating one-loop open string diagrams and identifying the D-instanton sum in the dual type I picture. We also compute SO(8)^4 threshold corrections and finally R^2 corrections in type I theory.Comment: 9 pages, Latex, To appear in the proceedings of "Quantum Aspects of Gauge Theories, Supersymmetries and Unification", Corfu, September 199

    Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold

    Full text link
    We describe the mirror of the Z orbifold as a representation of a class of generalized Calabi-Yau manifolds that can be realized as manifolds of dimension five and seven. Despite their dimension these correspond to superconformal theories with c=9c=9 and so are perfectly good for compactifying the heterotic string to the four dimensions of space-time. As a check of mirror symmetry we compute the structure of the space of complex structures of the mirror and check that this reproduces the known results for the Yukawa couplings and metric appropriate to the Kahler class parameters on the Z orbifold together with their instanton corrections.Comment: 39 pages, plain Te

    Impact of minority concentration on fundamental (H)D ICRF heating performance in JET-ILW

    Get PDF
    ITER will start its operation with non-activated hydrogen and helium plasmas at a reduced magnetic field of B-0 = 2.65 T. In hydrogen plasmas, the two ion cyclotron resonance frequency (ICRF) heating schemes available for central plasma heating (fundamental H majority and 2nd harmonic He-3 minority ICRF heating) are likely to suffer from relatively low RF wave absorption, as suggested by numerical modelling and confirmed by previous JET experiments conducted in conditions similar to those expected in ITER's initial phase. With He-4 plasmas, the commonly adopted fundamental H minority heating scheme will be used and its performance is expected to be much better. However, one important question that remains to be answered is whether increased levels of hydrogen (due to e. g. H pellet injection) jeopardize the high performance usually observed with this heating scheme, in particular in a full-metal environment. Recent JET experiments performed with the ITER-likewall shed some light onto this question and the main results concerning ICRF heating performance in L-mode discharges are summarized here

    Scattering of Cosmic Rays by Magnetohydrodynamic Interstellar Turbulence

    Full text link
    Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for substantial revisions in our understanding of cosmic ray transport. In this paper we use gyroresonance recently obtained scaling laws for MHD modes to calculate the scattering frequency for cosmic rays in the ISM. We consider gyroresonance with MHD modes (Alfvenic, slow and fast) and transit-time damping (TTD) by fast modes. We conclude that the gyroresonance with fast modes is the dominant contribution to cosmic ray scattering for the typical interstellar conditions. In contrast to earlier studies, we find that Alfvenic and slow modes are inefficient because they are far from isotropy usually assumed.Comment: 4 pages, 2 figures, Phys. Rev. Lett. in press, minor change

    Heterotic/type I duality, D-instantons and an N=2 AdS/CFT correspondence

    Get PDF
    D-instanton effects are studied for the IIB orientifold T^2/I\Omega(-1)^{F_L} of Sen using type I/heterotic duality. An exact one loop threshold calculation of t_8 \tr F^4 and t_8(\tr F^2)^2 terms for the heterotic string on T^2 with Wilson lines breaking SO(32) to SO(8)^4 is related to D-instanton induced terms in the worldvolume of D7 branes in the orientifold. Introducing D3 branes and using the AdS/CFT correspondence in this case, these terms are used to calculate Yang-Mills instanton contributions to four point functions of the large N_c limit of N=2 USp(2N_c) SYM with four fundamental and one antisymmetric tensor hypermultiplets.Comment: 25 pages, harvmac(b), one figure, v2: minor changes, version to appear in PR

    Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement

    Get PDF
    The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running coupling approaches a fix point in the infrared, α(0)=8.92/Nc\alpha(0) = 8.92/N_c. Two different fits for the scale dependence of the running coupling are given and discussed.Comment: 3 pages, 3 figures; talk given by R.A. at the conference Quark Nuclear Physics 200

    New Symmetries of Supersymmetric Effective Lagrangians

    Get PDF
    We consider the structure of effective lagrangians describing the low-energy dynamics of supersymmetric theories in which a global symmetry GG is spontaneously broken to a subgroup HH while supersymmetry is unbroken. In accordance with the supersymmetric Goldstone theorem, these lagrangians contain Nambu--Goldstone superfields associated with a coset space Gc/H^G^c / \hat{H}, where GcG^c is the complexification of GG and H^\hat{H} is the largest subgroup of GcG^c that leaves the order parameter invariant. The lagrangian may also contain additional light matter fields. To analyze the effective lagrangian for the matter fields, we first consider the case where the effective lagrangian is obtained by integrating out heavy modes at weak coupling (but including non-perturbative effects such as instantons). We show that the superpotential of the matter fields is H^\hat{H} invariant, which can give rise to non-trivial relations among independent HH-invariants in the superpotential. We also show that the Kahler potential of the matter fields can be restricted by a remnant of H^\hat{H} symmetry. These results are non-perturbative and have a simple group-theoretic interpretation. When we relax the weak-coupling constraint, there appear to be additional possibilities for the action of H^\hat{H} on the matter fields, hinting that the constraints imposed by H^\hat{H} may be even richer in strongly coupled theories.Comment: 23 pages, plain Te

    Higher Loop Spin Field Correlators in D=4 Superstring Theory

    Full text link
    We develop calculational tools to determine higher loop superstring correlators involving massless fermionic and spin fields in four space time dimensions. These correlation functions are basic ingredients for the calculation of loop amplitudes involving both bosons and fermions in D=4 heterotic and superstring theories. To obtain the full amplitudes in Lorentz covariant form the loop correlators of fermionic and spin fields have to be expressed in terms of SO(1,3) tensors. This is one of the main achievements in this work.Comment: 59 pages, 1 figure; v2: final version published in JHE

    Quantum cohomology of partial flag manifolds

    Full text link
    We compute the quantum cohomology rings of the partial flag manifolds F_{n_1\cdots n_k}=U(n)/(U(n_1)\times \cdots \times U(n_k)). The inductive computation uses the idea of Givental and Kim. Also we define a notion of the vertical quantum cohomology ring of the algebraic bundle. For the flag bundle F_{n_1\cdots n_k}(E) associated with the vector bundle E this ring is found.Comment: 33 page

    Quantization of the N=2 Supersymmetric KdV Hierarchy

    Get PDF
    We continue the study of the quantization of supersymmetric integrable KdV hierarchies. We consider the N=2 KdV model based on the sl(1)(2∣1)sl^{(1)}(2|1) affine algebra but with a new algebraic construction for the L-operator, different from the standard Drinfeld-Sokolov reduction. We construct the quantum monodromy matrix satisfying a special version of the reflection equation and show that in the classical limit, this object gives the monodromy matrix of N=2 supersymmetric KdV system. We also show that at both the classical and the quantum levels, the trace of the monodromy matrix (transfer matrix) is invariant under two supersymmetry transformations and the zero mode of the associated U(1) current.Comment: LaTeX2e, 12 page
    • 

    corecore