2,921 research outputs found

    Peephole optimization of asynchronous macromodule networks

    Get PDF
    Journal ArticleMost high level synthesis tools for asynchronous circuits take descriptions in concurrent hardware description languages and generate networks of macromodules or handshake components. In this paper we describe a peephole optimizer for such macromodule networks that often effects area and/or time improvements. Our optimizer first deduces an equivalent black-box behavior for the given network of macrmodules using Dill's trace-theoretic parallel composition operator. It then applies a new procedure culled Burst-mode reduction to obtain burst-mode machines, which can be synthesized into gate networks using available tools. Since burst-mode reduction can be applied to any macromodule network that is delay-insensitive as well as deterministic, our optimizer covers a significant number of asynchronous circuits especially those generated by asynchronous high level synthesis tools

    Empirical oscillating potentials for alloys from ab-initio fits

    Full text link
    By fitting to a database of ab-initio forces and energies, we can extract pair potentials for alloys, with a simple six-parameter analytic form including Friedel oscillations, which give a remarkably faithful account of many complex intermetallic compounds. As examples we show results for (crystal or quasicrystal) structure prediction and phonon spectrum for three systems: Fe--B, Al--Mg--Zn, and Al--Cu--Fe.Comment: 5 pages 3 figures 2 table

    Vibration Characteristics of Aircraft Engine-Bladed-Disk Assembly

    Get PDF
    This paper is concerned with the vibration characteristics of a gas-turbine blade-disk assembly and a third stage of compressor blade-disk assembly of an orpheus aircraft engine. The assembly is analyzed by considering each component individually and then combining them together with a receptance coupling technique by matching forces and displacements at each junction point. The blade is modelled by number of free-free aerofoil section beams staggered at different angles to the plane of the disk, and the non-uniform disk is modelled as numbers of concentric annuli. The natural frequencies and mode shapes for each case have been obtained. Results obtained are verified by testing both the above assemblies on a microprocessor based vibration exciter and real time analyzer. The mode shape corresponding to each natural frequency was obtained by probing with hand held accelerometer

    Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue

    Get PDF
    We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100,000 point sources detected at 7 and/or 15 micron in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane (|b| < 1 deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available via the VizieR Service at the Centre de Donn\'ees Astronomiques de Strasbourg (CDS, http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32 figures and detailed description of the data processing is available here: http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g

    Intelligent Tool for Determining the True Harmonic Current Contribution of a Customer in a Power Distribution Network

    Get PDF
    Customer loads connected to power distribution network may be broadly categorized as either linear or nonlinear. Nonlinear loads inject harmonics into the power network. Harmonics in a power system are classified as either load harmonics or as supply harmonics depending on their origin. The source impedance also impacts the harmonic current flowing in the network. Hence, any change in the source impedance is reflected in the harmonic spectrum of the current. This paper proposes a novel method based on artificial neural networks to isolate and evaluate the impact of the source impedance change without disrupting the operation of any load, by using actual field data. The test site chosen for this paper has a significant amount of triplen harmonics in the current. by processing the acquired data with the proposed algorithm, the actual load harmonic contribution of the customer is predicted. Experimental results confirm that attempting to predict the total harmonic distortion of a customer by simply measuring the customer\u27s current may not be accurate. The main advantage of this method is that only waveforms of voltages and currents at the point of common coupling have to be measured. This method is applicable for both single- and three-phase loads

    Intelligent Tool for Determining the True Harmonic Current Contribution of a Customer in a Power Distribution Network

    Get PDF
    Customer loads connected to electricity supply systems may be broadly categorized as either linear or nonlinear. Nonlinear loads inject harmonics into the power network. Harmonics in a power system are classified as either load harmonics or as supply harmonics depending on their origin. The source impedance also impacts the harmonic current flowing in the network. Hence any change in the source impedance is reflected in the harmonic spectrum of the current. This paper proposes a novel method based on Artificial Neural Networks to isolate and evaluate the impact of the source impedance change without disrupting the operation of any load, by using actual field data. The test site chosen for this study has a significant amount of triplen harmonics in the current. By processing the acquired data with the proposed algorithm, the actual load harmonic contribution of the customer is predicted. Experimental results confirm that attempting to predict the total harmonic distortion (THD) of a customer by simply measuring the customer\u27s current may not be accurate. The main advantage of this method is that only waveforms of voltages and currents at the point of common coupling have to be measured. This method is applicable for both single and three phase loads

    Salivary C-Reactive Protein in Hashimoto's Thyroiditis and Subacute Thyroiditis

    Get PDF
    C-reactive protein (CRP), an acute-phase reactant, has been identified as a saliva-based biomarker of inflammation. The objective of the study was to estimate and compare salivary CRP levels in Hashimoto's thyroiditis (HT) and Subacute thyroiditis (SAT). The study included 30 HT patients who presented with clinical features of hypothyroidism, 15 SAT patients who presented with clinical features of hyperthyroidism, and 20 healthy age- and sex-matched euthyroid controls. CRP levels in saliva were estimated using an Enzyme-Linked Immunosorbent Assay method with enhanced sensitivity. In HT, the mean salivary CRP levels did not differ significantly from controls. SAT patients had significantly elevated salivary CRP levels compared to HT patients and controls. The rise in salivary CRP levels in SAT patients conceivably reflects the presence of an inflammatory process. Saliva CRP levels appear to serve as inflammatory markers in SAT patients and may aid their clinical evaluation

    Bit-Vector Model Counting using Statistical Estimation

    Full text link
    Approximate model counting for bit-vector SMT formulas (generalizing \#SAT) has many applications such as probabilistic inference and quantitative information-flow security, but it is computationally difficult. Adding random parity constraints (XOR streamlining) and then checking satisfiability is an effective approximation technique, but it requires a prior hypothesis about the model count to produce useful results. We propose an approach inspired by statistical estimation to continually refine a probabilistic estimate of the model count for a formula, so that each XOR-streamlined query yields as much information as possible. We implement this approach, with an approximate probability model, as a wrapper around an off-the-shelf SMT solver or SAT solver. Experimental results show that the implementation is faster than the most similar previous approaches which used simpler refinement strategies. The technique also lets us model count formulas over floating-point constraints, which we demonstrate with an application to a vulnerability in differential privacy mechanisms
    corecore