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Intelligent Tool for Determining the True Harmonic
Current Contribution of a Customer in a

Power Distribution Network
Joy Mazumdar, Member, IEEE, Ronald G. Harley, Fellow, IEEE, Frank C. Lambert, Senior Member, IEEE,

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and Marty L. Page, Member, IEEE

Abstract—Customer loads connected to power distribution net-
work may be broadly categorized as either linear or nonlin-
ear. Nonlinear loads inject harmonics into the power network.
Harmonics in a power system are classified as either load har-
monics or as supply harmonics depending on their origin. The
source impedance also impacts the harmonic current flowing in the
network. Hence, any change in the source impedance is reflected in
the harmonic spectrum of the current. This paper proposes a novel
method based on artificial neural networks to isolate and evaluate
the impact of the source impedance change without disrupting
the operation of any load, by using actual field data. The test site
chosen for this paper has a significant amount of triplen harmonics
in the current. By processing the acquired data with the proposed
algorithm, the actual load harmonic contribution of the customer
is predicted. Experimental results confirm that attempting to
predict the total harmonic distortion of a customer by simply
measuring the customer’s current may not be accurate. The main
advantage of this method is that only waveforms of voltages and
currents at the point of common coupling have to be measured.
This method is applicable for both single- and three-phase loads.

Index Terms—Harmonic analysis, neural networks, power qual-
ity, power system harmonics, total harmonic distortion (THD).

I. INTRODUCTION

THE DEPENDENCE of modern life upon the continu-
ous supply of electrical energy makes system reliability

and power quality topics of utmost importance in the area
of power system research. Modern day industrial applications
extensively use power electronic devices. They have proven to
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Fig. 1. Typical one-line diagram of a power distribution network.

be extremely useful, but, unfortunately, the current waveforms
that these devices produce are not sinusoidal [1]. The presence
of current and voltage harmonics in power distribution systems
increases losses in lines, decreases the power factor, and can
even cause resonance with capacitors connected in parallel to
the system.

Harmonics are an important measurable parameter of power
quality. The related economic aspects of harmonics [2] and
deregulation [3] have all created a need for extensive monitor-
ing of the power system harmonics. Customers with sensitive
equipment use harmonic current monitoring to locate the source
of harmonic-related problems that might occur. On the other
side, utilities try to meet the demands of their customers. They
monitor the supply voltage to prove that the quality of the
offered power is within the prespecified standards and to obtain
the necessary information for solving problems [4].

Harmonic-related problems on electric utility distribution
systems are usually created by primary metered customers. The
significant harmonics are mostly 5th, 7th, 11th, and 13th with
the 5th harmonic as the largest in most cases. Classic utility-
side symptoms of harmonic problems are distorted voltage
waveforms, blown shunt capacitor fuses, and transformer over-
heating. Capacitor losses are sensitive to harmonic voltages.
Transformer losses are sensitive to harmonic currents.

A typical one-line diagram of a power distribution network
is shown in Fig. 1. If the nonlinear load is supplied from a
sinusoidal voltage source, its injected harmonic current iabc(t)
is referred to as contributions from the load or load harmonics.
Harmonic currents cause harmonic volt drops in the supply
network. Any other loads, even linear loads, connected to
the point of common coupling (PCC) have harmonic currents
injected into them by the distorted PCC voltage. Such currents
are referred to as contributions from the power system or supply
harmonics.

If several customers are connected to a PCC, it is not possible
by traditional methods [5], [6] to accurately determine the

0093-9994/$25.00 © 2008 IEEE
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Fig. 2. Substation circuit and data acquisition schematic.

amount of harmonic current injected by each customer, in
order to tell which customer(s) is injecting the excessively high
harmonic currents, or whether the source is responsible for
the harmonics by the virtue of a distorted PCC voltage. When
measurements of current are taken at the PCC, it is expected
that those measurements can be used to determine whether the
customer is in compliance with IEEE 519 [7], [8]. However,
results in this research show that the current measurements at
the PCC are not always reliable. If there is a significant amount
of distortion present in the PCC voltage, then this voltage
distortion affects the current distortion measurements. This may
create a situation that makes it appear as if a particular customer
is not in compliance with the harmonic current limits because
of the already distorted utility system voltage. In such a case, it
may be necessary to determine what the customer’s true current
harmonic distortions would be if the PCC voltage could be a
pure sinusoidal voltage.

However, establishing a pure sinusoidal voltage at the PCC
may not be feasible since that would mean performing utility
switching to reduce the system impedance to almost zero in
order to get νs to appear at the PCC. An alternative approach is
to use a neural network that is able to learn the customer’s load
admittance. Then, it is possible to predict the customer’s true
current harmonic distortions based on mathematically applying
a pure sinusoidal voltage to the learned load admittance.

This paper addresses the issues related to the change of
source impedance by a utility and how it impacts the power
system network harmonics based on field data gathered at a
substation in Georgia, USA. The test site chosen is primarily
a residential feeder. Furthermore, this paper demonstrates the
application of neural networks to predict the true harmonic
current distortion of the customer under a specific resonance
condition in the distribution system and validates the prediction
when the utility changes the source impedance to remove the
resonance condition.

II. ANALYSIS OF ACQUIRED DATA

The distribution system configuration at the measurement
site is a three-phase four-wire system. The waveforms of phase
A line-neutral voltage and the three line currents are acquired
as six cycle snapshots, every 20 s, for a period of 2 1/2 h.
Each snapshot measurement is designated as an event. Hence,
462 events are recorded. The sampling frequency for data
acquisition is set at 256 samples per cycle. All data acquisition
is done at the substation, as shown in Fig. 2. The measurement
instrument acquires binary data files. The software import
converts the data to text readable format.

A 20-A full-scale clamp on the current transformer (CT) is
used, measuring only about 0.25 A in the relay circuit of the
feeder breaker. The current therefore already reflects the CT
ratios and represents the current in primary line values. The
voltage is a 120-V measurement of a 25-kV line–line (14.4-kV
line to neutral) service. Hence, a potential transformer (PT)
ratio of 14400/120 is applied.

Fig. 3 shows the variation of the current THD for the three
line currents over the entire period of measurement.

The THD values for the three line currents undergo a step
change during event 238. This is the point when the utility
switched some capacitor banks in the substation to effect a
change in the source impedance. The phases A and B currents
had THDs in the range of 10.5%–11% before the source
impedance changed, and after the change, the THDs dropped
to values between 8.5% and 9%. The phase C current THDs
before and after the impedance change were 8% and 6.5%,
respectively.

Fig. 4 shows the variation of the voltage THD for phase A
over the entire period of measurement.

The voltage THD is well within the limits specified by IEEE
519 even after the small step increase when the impedance
change is made.

Fig. 5 shows six cycles of the actual phase A voltage and
current waveform acquired before the impedance change.

The voltage waveform in Fig. 5 appears clean, whereas the
current waveform is extremely noisy. Noisy current waveforms
with high harmonic content result in telephone interference, and
the same was reported from this site. The Fourier spectrum
of the current waveform in Fig. 5 is shown in Fig. 6 with a
dominant 9th harmonic.

Fig. 7 shows six cycles of the phase A voltage and current
waveforms after the impedance change. The current waveform
in Fig. 7 is still noisy after the impedance change; however, the
harmonic spectrum (Fig. 8) of the current has changed.

Some observations can be made from the aforementioned
plots. There is a dc offset present in the current waveform, and
the current is rich in high-frequency components. In particular,
the 9th harmonic dominates and causes telephone interference
on a street served by this feeder, which is the reason why this
particular circuit is chosen for analysis. The aforementioned
results indicate a possible network resonance. The switching
in the substation changes the source impedance and causes a
reduction in the 9th harmonic, as shown in Fig. 8. A high 9th
harmonic is often the result of a single fuse blown on a three-
phase capacitor bank, but in this case, no fuses were blown.
However, there are some subdivision loads with underground
service, and therefore, cable capacitance is present. Whatever
may be the cause [9], the customer current has triplen harmon-
ics, and the customer could be held responsible to take correc-
tive actions to rectify the same [10], [11], unless it could be
proven that these triplen harmonics cannot be attributed to the
customer.

III. ESTIMATION OF HARMONIC CURRENT

Artificial neural networks (ANNs) have provided an alter-
native modeling approach for power system applications. The
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Fig. 3. Variation of current THD for the three line currents.

multilayer perceptron network (MLPN) is one of the most
popular topologies in use today [12]. This paper uses a method
based on MLPN to predict the true harmonic current distortion

Fig. 4. Variation of phase A voltage THD.

Fig. 5. Six cycles of acquired voltage and current waveform before the
impedance change.

Fig. 6. FFT plot of phase A current before source impedance change.

that can be attributed to a customer, without disrupting the
operation of any customer. The method was originally pro-
posed in [13] and [14]. A single-line diagram, consisting of
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Fig. 7. Six cycles of acquired voltage and current waveform after the im-
pedance change.

Fig. 8. FFT plot of phase A current after source impedance change.

the utility equivalent circuit, the customer, and the neural-
network-based load model identifier (LMI), is shown in Fig. 9.
The utility equivalent circuit is composed of a three-phase
supply network having a sinusoidal voltage source νs, network
impedance Ls, Rs, and several other loads, which can be linear
or nonlinear.

The LMI consists of two individual neural network blocks,
namely, the identification neural network (ANN1) and the
estimation neural network (ANN2). The voltage νabc and
the current iabc at the service entrance of the customer are the
parameters of interest and are processed by the LMI.

A. Brief Description of the Scheme

The customer’s load currents ia, ib, and ic (denoted by iabc)
are composed of load harmonics as well as supply harmonics.
However, the utility sees the line current iabc as the harmonic
distortion injected into the network by the load. ANN1 is
trained to identify the nonlinear characteristics of the load (in
the case of a single-phase load), and for each phase individu-
ally for a three-phase load. At any moment in time after the
ANN1 training has been completed, its weights are transferred
to ANN2. ANN2 is then supplied offline with a three-phase

Fig. 9. Harmonic current prediction scheme.

mathematically generated sine wave νsine-abc to estimate its
three output currents îabc-distorted. Any distortion present in
the current waveforms îabc-distorted can now truly be attributed
to the nonlinearity of the load admittance. This procedure is
known as load modeling. ANN2 is a replica of the trained
ANN1 structurally. The function of ANN2 could have been car-
ried out by ANN1, but that would disrupt the continual online
training of ANN1 during the brief moments when îabc-distorted

has to be estimated. The algorithms of ANN1 and ANN2 are
executed in software.

B. Operation of the ANN1

The proposed method measures the instantaneous values
of the three voltages νabc at the PCC, as well as the three
line currents iabc at the kth moment in time. The voltages
νabc could be line-to-line or line-to-neutral measurements. The
ANN1 is designed to predict one step ahead the line current
îabc as a function of the present and delayed voltage vec-
tor values νabc(k), νabc(k − 1), and νabc(k − 2). When the
(k + 1)th moment arrives (at the next sampling instant), the
actual measured instantaneous values of iabc are compared with
the previously predicted values of îabc, and the error eo is
used to train the ANN1 weights. This ensures continual online
training of ANN1.

Initially, the weights have random values, but after several
sampling steps, the training soon converges, and the value of
the error eo in Fig. 9 diminishes to an acceptably small value,
as expressed by the value of mean squared error (mse) in (8).
Proof of this is illustrated by the fact that the individual phase
waveforms for iabc and îabc should practically lie on top of each
other, respectively. At this point, the ANN1 therefore represents
the admittance of the nonlinear load. This process is called
identifying the load admittance. Since continual online training
is used, it will correctly represent the load admittance from
moment to moment. At any moment in time after the ANN1
training has converged, its weights are transferred to ANN2.
The training cycle of ANN1 continues to follow load changes,
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Fig. 10. Structure of an MLPN.

and in this way, ANN2 always has updated weights available
when needed.

C. Operation of the ANN2

The ANN2 is supplied with a mathematically generated
sine wave to estimate its output. The output of ANN2 called
îabc-distorted therefore represents the current that the nonlin-
ear load would have drawn had it been supplied by a sinu-
soidal voltage source. Any distortion present in îabc-distorted

can now truly be attributed to the nonlinearity of the load
admittance.

Once a number of îabc-distorted cycles have been calculated
by ANN2, they are stored (and subsequently used for harmonic
analysis to find the true load-injected current total harmonic
distortion THDi). New weights are then uploaded from ANN1
to ANN2, and a series of new îabc-distorted cycles and a new
THDi are calculated. This THDi value may be recorded or
displayed at frequent predetermined intervals, or an average
value calculated over a period of time.

Due to the nature of the sigmoidal transfer function, the
outputs of the neurons in the hidden layer are limited to values
between zero and one. The inputs to the neural networks are
therefore first scaled to fall within the limits of ±1.The scaling
of the acquired data is done using software, and hence, that
removes any limitations whatsoever on the data acquisition
system and the transducers.

D. ANN Governing Equations

The structure of an MLPN is shown in Fig. 10. This network
consists of a set of input neurons, output neurons, and one or
more hidden layers of intermediate neurons. Data flow into
the network through the input layer, pass through the hidden
layer, and finally flow out of the network through the output
layer. The network thus has a simple interpretation as a form of
input–output model, with weights as free parameters [15].

The process of passing the inputs in Fig. 10 through the
neural network structure to its output is known as forward
propagation. Every input in the input column vector x is fed
via the corresponding weight in the input weight matrix W
to every node in the hidden layer to determine the activation
vector a. Each of the hidden neuron activations in a is then

passed through a sigmoidal function to determine the hidden-
layer decision vector d-

a =Wx (1)

di =
1

1 + e(−ai)
, i ∈ {1, 2, . . . ,m} (2)

where x ∈ Rn is the input column vector, a ∈ Rm is the
hidden-layer activation column vector, W ∈ Rm×n is the input
weight matrix, n is the number of inputs to the ANN, including
the bias, and m is the number of neurons in the hidden layer.
The elements of the decision vector d are then fed to the
corresponding weight in the output weight matrix V .

The ANN output is computed as

ŷ = (V d)T. (3)

For a single output system, the output weight matrix V ∈ R1×m

and ŷ is a scalar.
The output error is calculated as

eo = y − ŷ. (4)

The process of passing the output error to the input in order
to estimate the individual contribution of each weight in the
network to the final output error is known as error backpropa-
gation. The weights are then modified so as to reduce the output
error. The change in input weights ΔW and output weights ΔV
at step k are calculated as

ΔW (k) = γmΔW (k − 1) + γgeaxT

ΔV (k) = γmΔV + γgeydT (5)

where γm, γg ∈ [0, 1] are the momentum and learning gain
constants, respectively. The last step in the training process is
the actual updating of the weights at step k

W (k) =W (k − 1) + ΔW (k)
V (k) =V (k − 1) + ΔV (k). (6)

E. Selection of Optimal Number of Neurons for Hidden Layer

To model the harmonic characteristics of a nonlinear load,
the ANN architecture needs to address the issues regarding the
following:

1) the number of layers;
2) the number of neurons in each layer;
3) the hidden-layer activation function.

For any nonlinear function identification type problem, at
least one hidden layer is required. Additionally, a nonlinear
continuously differentiable hidden-layer activation function,
such as the sigmoidal function, allows the network to perform
nonlinear modeling. Depending on the application, the number
of ANN inputs and the number of outputs are fixed. The only
structural variable then remaining is the number of neurons m
in the hidden layer. The ANN execution time and the training
convergence are directly dependent on the value of m. Two per-
formance criteria for the measure of ANN training convergence
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are typically used; they are the absolute value of the tracking
error Te defined as

Te = |(y − ŷ)| (7)

and the mse defined as

mse =
1
r

r∑

1

|(y − ŷ)|2 (8)

where r is the number of training epochs. The tracking error
Te varies at a high rate as training progresses. For this reason,
it is more convenient to consider the mse which is a smooth
curve due to the averaging process. In neural network training,
it is not possible to get the mse to be exactly zero; thus, the
objective is to get it down below some minimum value, typi-
cally (msemin < 10−2). This can be achieved by providing in-
formation to the neural network about the history of the system
dynamics, typically in the form of delayed inputs and outputs.

The number of neurons in the hidden layer affects the rate
and the final value of the mse convergence, and is typically
chosen on a heuristic basis after several iterations. For the
specific problem presented in this paper, based on experimental
data and experience, the following formula provides a starting
point for choosing the number of neurons in the hidden layer:

Hn ≈ K ∗ n

C · S · msemin
(9)

where Hn is the number of neurons in the hidden layer, C is the
number of cycles of training data, msemin is the acceptable mse
in training, S is the number of samples per cycle of the acquired
data, n is the number of inputs, and K is a constant depending
on the number of inputs used and the sampling frequency of
data. The aforementioned formula has been adapted from the
work of Baum and Haussler [16].

The data acquisition meter used at the site is an AVO Megger
PA-9 Plus meter with data sampling set at 256 samples/cycle.
Starting with random initial values for the ANN weights, and
to achieve an msemin of 0.2% with data from one event (i.e.,
six cycles), the value of K comes out to be 24. By substituting
these values in (9), the value of Hn is 23. Fig. 11 shows the
value of mse for ANN1 obtained experimentally for different
values of neurons in the hidden layer. For the work presented
in this paper, the number of neurons used in the hidden
layer is 20.

IV. EXPERIMENTAL RESULTS

A. Before Source Impedance Change

The method of using online-trained ANNs to identify the
load admittance and utilizing the trained neural network to
estimate the true harmonic current injection of a customer is
demonstrated with the help of field data.

The text readable field data from the AVO Megger PA-
9 Plus meter are imported to MATLAB and passed on to
the neural network code. The powergui block of Simulink is
used to calculate the voltage and current THDs. These THDs
are then compared with the values computed directly by the

Fig. 11. Variation of mse over different values of the number of neurons in
the hidden layer for ANN1.

Fig. 12. Demonstration of ANN1 training: waveforms of ia and îa coincide.

field instrument, in order to verify that both the values are
the same.

The phase A voltage and current data in Fig. 4 are used as
the pilot data since that has the highest 9th order harmonic
and also has the highest harmonic current distortion. These
data are passed through a second-order low-pass filter (imple-
mented in Simulink) with cutoff frequency fc = 2 kHz in order
to eliminate the high-frequency components. The conditioned
data are used to train the neural network ANN1 until the
training error converges to near zero, and the output of ANN1
îa correctly tracks the actual phase A current ia of the customer.
Fig. 12 shows how well ANN1 has converged since its output
îa coincides with the actual ia waveform.

The convergence of the training can also be verified by
considering the mse in Fig. 13 which has a value less than 10−2

and almost constant after 400 epochs.
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Fig. 13. Measure of ANN1 training convergence: mse in current training.

Fig. 14. Estimated phase A current when supplied with clean sine wave.

Once the training error is below a predefined level msemin

(< 10−2), it can be concluded that ANN1 has learned the
admittance of the customer load to an acceptable level of
accuracy. The weights of ANN1 are now transferred to ANN2.
While the ANN1 training continues, the computations of ANN2
are done offline.

ANN2 is now supplied with a mathematically generated sine-
wave voltage with zero distortion as its input. This is equivalent
to the situation wherein the customer is getting a clean sine-
wave voltage at its service entrance and the resonance point in
the line, along with other disturbances and supply harmonics,
is being avoided. Any load serviced by a utility is designed and
optimized to operate at 60 Hz; however, once it is connected
to the power system network, it rarely receives a clean 60-Hz
supply. The output of ANN2 is îa-distorted and is shown in
Fig. 14.

In other words, the îa-distorted waveform gives the same
information that could have been obtained by quickly removing
the customer from the line (if this were possible) and connect-

Fig. 15. FFT spectrum of the ANN2 predicted current waveform.

ing a pure sinusoidal voltage source to the service entrance
of the customer, except that it is not necessary to actually do
this interruption. The frequency spectrum of the îa-distorted

waveform is shown in Fig. 15.
The true current distortion of the customer turns out to be

3.02% in Fig. 15 instead of the 10.36% of Fig. 6. However, a
more significant finding from the fast Fourier transform (FFT)
spectrum is the reduction of the 9th harmonic from 8.5% to
about 1.5% of the fundamental.

B. After Source Impedance Change

The source impedance switching by the utility detunes the
resonance point in the feeder, and that results in the reduction
of the 9th harmonic from 8.5% to about 3.5% of the funda-
mental, as shown in Fig. 8. This result does show that for the
particular operating point of the feeder, a resonance condition
has a detrimental effect on the power distribution network and
triggers the 9th harmonic in the customer’s current.

Application of the load modeling tool shows that the 9th
harmonic current is caused by both the customer and the utility
and not just by the customer alone.

V. CONCLUSION

If individual harmonic current injections were known, then a
utility could penalize the offending customer in some appropri-
ate way, including, for example, a special tariff or insist on cor-
rective action by the customer. Simply measuring the harmonic
currents for each individual customer is not sufficiently accurate
since these harmonic currents may be caused by not only the
nonlinear load but also by a nonsinusoidal PCC voltage.

This paper demonstrated the ability of MLPNs to learn the
admittance of the customer load using actual field data and
utilize a trained neural network for estimating the true harmonic
distortion caused by that customer. The advantages of this
method are that it can be implemented online without disrupting
the operation of any load, since only voltages and currents need
to be measured; it does not require any special instruments, and
it does not need to make any assumptions about any quantities,
e.g., the impedance of the source, or a sine-wave PCC voltage.
Every customer has individual power meters which are already
receiving the waveforms of voltage and currents, and hence, it
is a feasible option to implement the scheme for each customer
individually.
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Standards like IEEE 519 provide guidelines for regulating
harmonic distortion levels that divide the responsibility be-
tween the utility and the customer. The utility has to maintain
voltage distortion at the PCC below the specified limits, and the
customer has to limit the amount of harmonic current injection
onto the utility system. However, when certain unusual events
like resonance occur in a power system, for instance, the load
modeling tool provides a starting point for the troubleshooting
to detect the origin of the problem. The information provided by
the new method regarding the true current distortion of a load
could be used to persuade an offending customer to take steps
to mitigate an unacceptably high level of distortion.

The load modeling tool is designed in software and, hence,
can be integrated into any existing power quality diagnostic
instrument or be fabricated as a stand-alone instrument that
could be installed in substations of large customer loads or used
as a hand-held clip on instrument.

ACKNOWLEDGMENT

The authors would like to thank the Georgia Power Company
for providing the field data and technical assistance required for
this paper.

REFERENCES

[1] E. L. Owen, “A history of harmonics in power systems,” IEEE Ind. Appl.
Mag., vol. 4, no. 1, pp. 6–12, Jan./Feb. 1998.

[2] M. F. McGranaghan, “Economic evaluation of power quality,” IEEE
Power Eng. Rev., vol. 22, no. 2, pp. 8–12, Feb. 2002.

[3] J. Arrillaga, M. H. J. Bollen, and N. R. Watson, “Power quality following
deregulation,” Proc. IEEE, vol. 88, no. 2, pp. 246–261, Feb. 2000.

[4] Y. H. Yan, C. S. Chen, C. S. Moo, and C. T. Hsu, “Harmonic analysis for
industrial customers,” IEEE Trans. Ind. Appl., vol. 30, no. 2, pp. 462–468,
Mar./Apr. 1994.

[5] W. Xu and Y. Liu, “A method for determining customer and utility
harmonic contributions at the point of common coupling,” IEEE Trans.
Power Del., vol. 15, no. 2, pp. 804–811, Apr. 2000.

[6] K. Srinivasan, “On separating customer and supply side harmonic con-
tributions,” IEEE Trans. Power Del., vol. 11, no. 2, pp. 1003–1012,
Apr. 1996.

[7] IEEE Recommended Practices and Requirements for Harmonic Control
in Electric Power Systems, IEEE Std. 519-1992, 1992.

[8] T. M. Blooming and D. J. Carnovale, “Harmonic convergence,” IEEE Ind.
Appl. Mag., vol. 13, no. 1, pp. 21–27, Jan./Feb. 2007.

[9] Z. Huang, W. Xu, and V. R. Dinavahi, “A practical harmonic resonance
guideline for shunt capacitor applications,” IEEE Trans. Power Del.,
vol. 18, no. 4, pp. 1382–1387, Oct. 2003.

[10] H. Fujita and H. Akagi, “A practical approach to harmonic compensation
in power systems—Series connection of passive and active filters,” IEEE
Trans. Ind. Appl., vol. 27, no. 6, pp. 1020–1025, Nov./Dec. 1991.

[11] P.-T. Cheng, S. Bhattacharya, and D. Divan, “Operations of the dominant
harmonic active filter (DHAF) under realistic utility conditions,” IEEE
Trans. Ind. Appl., vol. 37, no. 4, pp. 1037–1044, Jul./Aug. 2001.

[12] B. Burton and R. G. Harley, “Reducing the computational demands of
continually online-trained artificial neural networks for system identifica-
tion and control of fast processes,” IEEE Trans. Ind. Appl., vol. 34, no. 3,
pp. 589–596, May/Jun. 1998.

[13] R. Harley, F. Lambert, T. Habetler, and J. Mazumdar, “System and
method for determining harmonic contributions from nonlinear loads,”
U.S. Patent 7 013 227, Mar. 14, 2006.

[14] J. Mazumdar, R. Harley, and F. Lambert, “System and method for
determining harmonic contributions from non-linear loads,” in Conf.
Rec. IEEE IAS Annu. Meeting, Hong Kong, Oct. 2–6, 2005, vol. 4,
pp. 2456–2463.

[15] S. Haykin, Neural Networks—A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1998.

[16] E. B. Baum and D. Haussler, “What size net gives valid generalization?”
Neural Comput., vol. 1, no. 5, pp. 151–160, Spring 1989.

Joy Mazumdar (S’00–M’06) received the B.S. de-
gree in electronics engineering from Shivaji Univer-
sity, Kolhapur, India, in 1994, the M.S. degree in
electrical engineering from the University of Central
Florida, Orlando, in 2002, and the Ph.D. degree in
electrical engineering from the Georgia Institute of
Technology, Atlanta, in 2006.

He is currently with the Siemens Energy and Au-
tomation, Power Conversion Division, Alpharetta,
GA, as a Senior Systems Engineer. Prior to graduate
school, he was a Power Electronics Engineer with

Siemens, Ltd., India, from 1995 to 2000. His current responsibilities include
design and new application development for active front ends, power system
studies leading to utility compliance, and utility-scale energy storage. His other
research focuses on the development of a power system harmonics monitoring
tool using neural network techniques. He is the joint holder of two patents,
one issued and one pending. His research interests include utility applications
of power electronics, power quality issues, active filters, inverter design for
renewable energy systems, switching power supplies, variable-speed drives,
and control techniques.

Ronald G. Harley (M’77–SM’86–F’92) received
the M.Sc.Eng. degree in electrical engineering
(cum laude) from the University of Pretoria, Pretoria,
South Africa, in 1965, and the Ph.D. degree from
London University, London, U.K., in 1969.

In 1971, he was appointed as the Chair of Elec-
trical Machines and Power Systems, University of
Natal, Durban, South Africa, where he was a Pro-
fessor of electrical engineering for many years and
became the Department Head and the Deputy Dean
of Engineering. He is currently the Duke Power

Company Distinguished Professor with the School of Electrical Engineering,
Georgia Institute of Technology, Atlanta. He has coauthored some 380 papers
in refereed journals and international conference proceedings. He is the holder
of three patents. His research interests include dynamic behavior and condition
monitoring of electric machines, motor drives, power systems and their com-
ponents, and controlling them by the use of power electronics and intelligent
control algorithms.

Dr. Harley is a Fellow of the Institution of Electrical Engineers, U.K.
He is also a Fellow of the Royal Society in South Africa and a Founder
Member of the Academy of Science in South Africa formed in 1994. During
2000 and 2001, he was one of the IEEE Industry Applications Society’s six
Distinguished Lecturers. He was the Vice-President of Operations of the IEEE
Power Electronics Society from 2003 to 2004 and the Chair of the Atlanta
Chapter of the IEEE Power Engineering Society. He is currently the Chair of the
Distinguished Lecturers and Regional Speakers program of the IEEE Industry
Applications Society. He was the recipient of the Cyrill Veinott Award in 2005
from the IEEE Power Engineering Society for his “outstanding contributions to
the field of electromechanical energy conversion.” Ten of his coauthored papers
have also attracted prizes from journals and conferences.

Frank C. Lambert (SM’90) received the B.S. and
M.S. degrees in electric power engineering from
the Georgia Institute of Technology (Georgia Tech),
Atlanta, in 1973 and 1976, respectively.

From 1973 to 1995, he was with the Georgia
Power Company, gaining experience in distribu-
tion and transmission engineering, operations, and
management. He worked with Georgia Tech to
develop a graduate course in high-voltage engineer-
ing and cotaught the laboratory sessions. He joined
the National Electric Energy Testing Research and

Applications Center (NEETRAC) in 1996 to manage the Electrical Systems
Research Program and is active in PES, where he serves on several working
groups in the Distribution Subcommittee. He is currently the Electrical Sys-
tems Program Manager with NEETRAC, School of Electrical Engineering,
Georgia Tech.



MAZUMDAR et al.: TOOL FOR DETERMINING THE TRUE HARMONIC CURRENT CONTRIBUTION OF A CUSTOMER 1485

Ganesh Kumar Venayagamoorthy (S’91–M’97–
SM’02) received the B.Eng. (Honors) degree in elec-
trical and electronics engineering (with a first class
honors) from the Abubakar Tafawa Balewa Univer-
sity, Bauchi, Nigeria, in 1994, and the M.Sc.Eng.
and Ph.D. degrees in electrical engineering from the
University of Natal, Durban, South Africa, in 1999
and 2002, respectively.

He is currently an Associate Professor of electrical
and computer engineering and the Director of the
Real-Time Power and Intelligent Systems Labora-

tory, Missouri University of Science and Technology, Rolla. His research in-
terests include power systems stability and control, computational intelligence,
signal processing, and evolvable hardware. He has published about 200 papers
in refereed journals and international conference proceedings.

Dr. Venayagamoorthy is currently the Chapter Chair of the IEEE St. Louis
CIS and IAS, the Chair of the Task Force on Intelligent Control Systems and
the Secretary of the Intelligent Systems subcommittee of the IEEE Power
Engineering Society, and the Chair of the IEEE CIS Task Force on Power
System Applications. He was the recipient of the following awards: the 2005
IEEE Industry Applications Society (IAS) Outstanding Young Member Award,
the 2005 South African Institute of Electrical Engineers Young Achievers
Award, the 2004 IEEE St. Louis Section Outstanding Young Engineer Award,
the 2003 International Neural Network Society Young Investigator Award, the
2001 IEEE Computational Intelligence Society (CIS) Walter Karplus Summer
Research Award, and five prize papers from the IEEE IAS and the IEEE CIS.

Marty L. Page (M’04) was born in Dalton, GA,
in 1959. He received the B.S. degree in electrical
engineering technology from Southern Polytechnic
Institute, Marietta, GA, in 1982.

He has been with the Georgia Power Company,
Atlanta, working in various engineering positions
throughout his entire career, where he is currently
with Distribution Reliability and Management. He
has experience in transmission system fault data
acquisition and analysis, substation testing and com-
missioning, power quality investigations within in-

dustrial and commercial facilities, and distribution system power quality
management.

Mr. Page is a member of the IEEE Power Engineering Society. He is a
Registered Professional Engineer in the State of Georgia.


	Intelligent Tool for Determining the True Harmonic Current Contribution of a Customer in a Power Distribution Network
	Recommended Citation

	Intelligent tool for determining the true harmonic current contribution of a customer in a power distribution network IEEE Transactions on Industry Applications

