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Abstract—Customer loads connected to electricity supply systems 
may be broadly categorized as either linear or nonlinear. 
Nonlinear loads inject harmonics into the power network. 
Harmonics in a power system are classified as either load 
harmonics or as supply harmonics depending on their origin. The 
source impedance also impacts the harmonic current flowing in 
the network. Hence any change in the source impedance is 
reflected in the harmonic spectrum of the current. This paper 
proposes a novel method based on Artificial Neural Networks to 
isolate and evaluate the impact of the source impedance change 
without disrupting the operation of any load, by using actual field 
data. The test site chosen for this study has a significant amount 
of triplen harmonics in the current. By processing the acquired 
data with the proposed algorithm, the actual load harmonic 
contribution of the customer is predicted. Experimental results 
confirm that attempting to predict the total harmonic distortion 
(THD) of a customer by simply measuring the customer’s current 
may not be accurate. The main advantage of this method is that 
only waveforms of voltages and currents at the point of common 
coupling have to be measured. This method is applicable for both 
single and three phase loads.  

Keywords-power system harmonics; harmonic analysis; neural 
networks; power quality; total harmonic distortion 

I.  INTRODUCTION 
The dependence of modern life upon the continuous supply 

of electrical energy makes system reliability and power quality 
topics of utmost importance in the area of power system 
research. Modern day industrial applications extensively use  
power electronic devices. They have proven to be extremely 
useful but, unfortunately, the current waveforms that these 
devices produce are not sinusoidal [1]. The presence of current 
and voltage harmonics in power distribution systems increases 
losses in lines, decreases the power factor, and can even cause 
resonance with capacitors connected in parallel to the system. 
Present equipment setups and devices used in commercial and 
industrial facilities, such as digital computers, automated 
equipments, etc are extremely sensitive to harmonics [2]. As a 
result, power quality in recent years has become an important 
issue and is receiving increasing attention by utility, customer, 
and consulting engineers.  

Harmonics-related problems on electric utility distribution 
systems are usually created by primary metered customers. The 
significant harmonics are mostly  th5 , th7 , th11  and th13  with 
the th5 harmonic the largest in most cases. Classic utility-side 
symptoms of harmonics problems are distorted voltage 
waveforms, blown shunt capacitor fuses, and transformer 
overheating. Capacitor losses are sensitive to harmonic 
voltages. Transformer losses are sensitive to harmonic currents.  

In 1981, the IEEE 519 harmonic standard was issued as a 
guideline for harmonic related issues. The standard was revised 
in 1992 [3], [4]. IEEE 519 attempts to establish reasonable 
harmonic goals for electrical systems that contain nonlinear 
loads. The objective is to propose steady-state harmonic limits 
that are considered reasonable by both electric utilities and 
their customers. IEEE 519 standard is a recommended practice, 
not an enforced law, although it is being increasingly applied as 
such [5].  

A typical one line diagram of a power distribution network 
is shown in Fig. 1. If the nonlinear load is supplied from a 
sinusoidal voltage source, its injected harmonic current ( )abci t  
is referred to as contributions from the load, or load harmonics. 
Harmonic currents cause harmonic volt drops in the supply 
network. Any other loads, even linear loads, connected to the 
point of common coupling (PCC) have harmonic currents 
injected into them by the distorted PCC voltage. Such currents 
are referred to as contributions from the power system, or 
supply harmonics. 

pccv1R 1L PCC

sv
abci L

Nonlinear Load
Z

Metering

h1ih2ihni

2RnR 2LnL

 

Figure 1.  Typical one line diagram of a power distribution network 

If several customers are connected to a PCC, it is not 
possible by traditional methods [6], [7] to accurately determine 
the amount of harmonic current injected by each customer, in 
order to tell which customer(s) is injecting the excessively high 
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harmonic currents, or whether the source is responsible for the 
harmonics by the virtue of a distorted PCC voltage.  

To mitigate the effects of harmonic currents, harmonic 
filtering has been a standard solution adopted by industry [8]. 
Harmonic filters are mainly classified as passive filters and 
active filters. Passive L-C tuned filters are used to absorb the 
harmonic currents generated by nonlinear loads. Active filters, 
on the other hand, are based on PWM current or PWM voltage 
source inverters, which are controlled to stop the flow of 
harmonic current from the nonlinear load to the utility system 
[9], [10]. At this point, the issue of harmonic resonance 
warrants special attention. Installed L-C tuned filters may 
resonate with the system impedance. Resonance occurs when 
the harmonic currents injected by nonlinear loads interact with 
system impedances to produce high harmonic voltages. 
Resonance can cause nuisance tripping of sensitive electronic 
loads and high harmonic currents in feeder capacitor banks. In 
severe cases, capacitors produce audible noise and sometimes 
even bulge. Under these circumstances, utilities sometimes 
change the source impedance by switching capacitor banks. 
Changing the source impedance components, such as 
transformer impedance or system impedance, on a distribution 
system, detunes the system. This can have a significant impact 
on the harmonic content of the current flowing in the network 
[11]. In general, higher source impedance yields higher voltage 
harmonics.  

This paper addresses the issues related to the change of 
source impedance by a utility and how it impacts the power 
system network harmonics based on field data gathered at a 
substation in Georgia, USA. The test site chosen is primarily a 
residential feeder. Furthermore, this paper demonstrates the 
application of neural networks to predict the true harmonic 
current distortion of the customer under a specific resonance 
condition in the distribution system and validates the prediction 
when the utility changes the source impedance to remove the 
resonance condition.   

II. ANALYSIS OF ACQUIRED DATA 
The distribution system configuration at the measurement 

site is a 3 phase 4 wire wye connection. Waveforms of phase A 
line-neutral voltage and the three line currents are acquired as 6 
cycle snapshots, every 20 seconds, for a period 21/2 hours. Each 
snapshot measurement is designated as an event. Hence 462 
events are recorded. The sampling frequency for data 
acquisition is set at 256 samples per cycle. All data acquisition 
is done at the substation as shown in Fig. 2. The measurement 
instrument acquires binary data files. The software import 
converts the data to text readable format. 

 
Figure 2.  Substation circuit and data acquisition schematic 

A 20 ampere full scale clamp on the CT is used, measuring 
only about 0.25 amps in the relay circuit of the feeder breaker. 
The current therefore already reflects the CT ratios and 
represents the current in primary line values. The voltage is a 
120 volt measurement of a 25 kV line-line (14.4 kV line to 
neutral) service. Hence, a PT ratio of 14400/120 is applied.  

Figure 3 shows the variation of the current THD for the 
three line currents over the entire period of measurement. 
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Figure 3.  Variation of current THD for the three line currents 
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The THD values for the three line currents undergo a step 
change during event 238. This is the point when the utility 
switched some capacitor banks in the substation to effect a 
change in the source impedance. The phase A and phase B 
currents had THD’s in the range of 10.5~11% before the source 
impedance changed and after the change, the THD’s dropped 
to values between 8.5~9%. The phase C current THD before 
and after the impedance change was 8% and 6.5% respectively. 

Figure 4 shows the variation of the voltage THD for phase 
A over the entire period of measurement. 
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Figure 4.  Variation of phase A voltage THD 

The voltage THD is well within the limits specified by IEEE 
519 even after the small step increase when the impedance 
change is made. 

Figure 5 shows six cycles of the actual phase A voltage and 
current waveform acquired before the impedance change.  
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Figure 5.  Six cycles of acquired voltage and current waveform before the 
impedance change 

The voltage waveform in Fig. 5 appears clean, while the 
current waveform is extremely noisy. Noisy current waveforms 
with high harmonic content result in telephone interference and 

the same was reported from this site. The Fourier spectrum of 
the current waveform in Fig. 5 is shown in Fig. 6 with a 
dominant th9 harmonic.  

 

Figure 6.  FFT plot of phase A current before source impedance change 

Figure 7 shows six cycles of the phase A voltage and 
current waveforms after the impedance change. The current 
waveform in Fig. 7 is still noisy after the impedance change; 
however the harmonic spectrum (Fig. 8) of the current has 
changed. 
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Figure 7.  Six cycles of acquired voltage and current waveform after the 
impedance change 

 

Figure 8.  FFT plot of phase A current after source impedance change 
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Some observations can be made from the above plots. 
There is a DC offset present in the current waveform and the 
current is rich in high frequency components. In particular the 

th9 harmonic dominates and causes telephone interference on a 
street served by this feeder, which is the reason why this 
particular circuit is chosen for analysis.  The above results 
indicate a possible network resonance. The switching in the 
substation changes the source impedance and causes a 
reduction in the th9  harmonic as shown in Fig. 8.  A high th9  
harmonic is often the result of a single fuse blown on a three 
phase capacitor bank, but in this case no fuses blew. However, 
there are some subdivision loads with underground service and 
therefore, cable capacitance is present. Whatever may be the 
cause [12], the customer current has triplen harmonics and the 
customer could be held responsible to take corrective actions to 
rectify the same [13], [14], unless it could be proven that these 
triplen harmonics cannot be attributed to the customer.  

III. ESTIMATION OF HARMONIC CURRENT 
Artificial Neural Networks (ANNs) have provided an 

alternative modeling approach for power system applications. 
The multilayer perceptron network (MLPN) is one of the most 
popular topologies in use today [15]. This paper uses a method 
based on MLPN to predict the true harmonic current distortion 
that can be attributed to a customer, without disrupting the 
operation of any customer. The method was originally 
proposed in [16]. A single line diagram, consisting of the utility 
equivalent circuit, the customer and the neural network based 
Load Model Identifier (LMI) is shown in Fig. 9.  The utility 
equivalent circuit comprises of a three-phase supply network 
having a sinusoidal voltage source sv , network impedance 

sL , sR  and several other loads, which can be linear or 
nonlinear. The LMI consists of two individual neural network 
blocks, the identification neural network (ANN1) and the 
estimation neural network (ANN2). The voltage abcv  and 
current abci at the service entrance of the customer are the 
parameters of interest and are processed by the LMI. 

sine abcv −

âbci

abci

âbc distortedi −

abcvsv SR SL

oe

1z−

 

Figure 9.  Harmonic current prediction scheme 

A. Brief description of the scheme 
The customer’s load currents ai , 

bi , and 
ci , (denoted by 

abci ), are composed of load harmonics as well as supply 
harmonics. However, the utility sees the line current  abci  as the 
harmonic distortion injected into the network by the load. 
ANN1 is trained to identify the nonlinear characteristics of the 
load (in the case of a single phase load), and for each phase 
individually for a three-phase load. At any moment in time 
after the ANN1 training has been completed, its weights are 
transferred to ANN2. ANN2 is then supplied offline with a 
three-phase mathematically generated sine-wave sine abcv −   to 

estimate its three output currents â bc d is tortedi − . Any distortion 

present in the current waveforms â bc d is tortedi − can now truly be 
attributed to the nonlinearity of the load admittance. This 
procedure is known as load modeling. ANN2 is a replica of the 
trained ANN1 structurally. The function of ANN2 could have 
been carried out by ANN1, but that would disrupt the continual 
online training of ANN1 during the brief moments when 

â bc d is tortedi − has to be estimated. The algorithms of ANN1 and 
ANN2 are executed in software. 

B. Operation of the Identification Neural Network (ANN1) 
The proposed method measures the instantaneous values of 

the three voltages abcv at the PCC, as well as the three line 
currents abci at the thk moment in time.  The voltages abcv could 
be line-to-line or line-to-neutral measurements. The ANN1 is 
designed to predict one step ahead the line current âbci as a 
function of the present and delayed voltage vector values 

( )abcv k , ( 1)abcv k − and ( 2)abcv k − . When the ( )thk 1+  moment 
arrives (at the next sampling instant), the actual measured 
instantaneous values of  abci  are compared with the previously 
predicted values of âbci  , and the error oe  is used to train the 
ANN1 weights. This ensures continual online training of 
ANN1. 

Initially the weights have random values, but after several 
sampling steps, the training soon converges and the value of 
the error oe in Fig. 9 diminishes to an acceptably small value, 
as expressed by the value of mean squared error in (8). Proof of 
this is illustrated by the fact that the individual phase 
waveforms for abci and âbci  should practically lie on top of each 
other respectively.  At this point the ANN1 therefore represents 
the admittance of the nonlinear load. This process is called 
identifying the load admittance. Since continual online training 
is used, it will correctly represent the load admittance from 
moment to moment. At any moment in time after the ANN1 
training has converged, its weights are transferred to ANN2. 
The training cycle of ANN1 continues to follow load changes 
and in this way ANN2 always has updated weights available 
when needed.  

C. Operation of the Estimation  Neural Network(ANN2) 
The estimation neural network ANN2 is supplied with a 

mathematically generated sine-wave to estimate its output. The 
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output of ANN2 called â bc d is tor tedi − therefore represents the 
current that the nonlinear load would have drawn had it been 
supplied by a sinusoidal voltage source. Any distortion present 
in â bc d is tor tedi − can now truly be attributed to the   nonlinearity 
of the load admittance.  

Once a number of â bc d is tor tedi − cycles have been calculated 
by ANN2, they are stored (and subsequently used for harmonic 
analysis to find the true load-injected current total harmonic 
distortion iTH D ). New weights are then uploaded from 

ANN1 to ANN2, and a series of new âbc distortedi − cycles and a 
new iTH D are calculated. This iTH D value may be recorded 
or displayed at frequent pre-determined intervals, or an average 
value calculated over a period of time.  

Due to the nature of the sigmoidal transfer function, the 
outputs of the neurons in the hidden layer are limited to values 
between 0 and1 . The inputs to the neural networks are 
therefore first scaled to fall within the limits of 1± .The 
scaling of the acquired data is done using software and hence 
that removes any limitations whatsoever on the data acquisition 
system and the transducers. 

D. ANN Governing Equations 
The structure of a MLPN is shown in Fig. 10. This network 

consists of a set of input neurons, output neurons and one or 
more hidden layers of intermediate neurons. Data flows into the 
network through the input layer, passes through the hidden 
layer and finally flows out of the network through the output 
layer. The network thus has a simple interpretation as a form of 
input-output model, with network weights as free parameters. 

 

∑

∑

∑

∑

1
( )

( 1)
( 2)

x k
x k
x k

 
 
 
 − 
 − 

ˆ( 1)y k +

( )x k

∑

( 1)y k +

oe

 

Figure 10.  Structure of a MLPN 

The process of passing the inputs in Fig. 10 through the 
neural network structure to its output is known as forward 
propagation.  Every input in the input column vector x  is fed 
via the corresponding weight in the input weight matrix W to 
every node in the hidden layer to determine the activation 
vector a . Each of the hidden neuron activations in a  is then 
passed through a sigmoidal function to determine the hidden-
layer decision vector d . 

                                 a W x=                                              (1) 

                               ( )

1 ,
1 ii ad

e −=
+

{ }1,2,....,i m∈            (2) 

where the input column vector nx R∈ , the hidden layer 
activation column vector ma R∈ , the input weight matrix 

m nW R ×∈ , n is the number of inputs to the ANN including the 
bias and m is the number of neurons in the hidden-layer. The 
elements of the decision vector d  are then fed to the 
corresponding weight in the output weight matrix V .  

The ANN output is computed as  

                                       ˆ ( )Ty V d=                                          (3) 

For a single output system, the output weight matrix 
1 mV R ×∈ and ŷ is a scalar.  

The output error is calculated as  

                                 ˆoe y y= −                                          (4) 

The process of passing the output error to the input in order 
to estimate the individual contribution of each weight in the 
network to the final output error is known as error 
backpropagation [17]. The weights are then modified so as to 
reduce the output error. The change in input weights W∆ and 
output weights V∆ at step k  are calculated as 

                       ( ) ( 1) T
m g aW k W k e xγ γ∆ = ∆ − +  

                        ( ) T
m g yV k V e dγ γ∆ = ∆ +                      (5) 

where [ ], 0,1m gγ γ ∈ are the momentum and learning gain 
constants respectively. The last step in the training process is 
the actual updating of the weights at step k  

                              ( ) ( 1) ( )W k W k W k= − + ∆  

                               ( ) ( 1) ( )V k V k V k= − + ∆                  (6) 

E. Selection of optimal number of neurons for hidden layer 
To model the harmonic characteristics of a nonlinear load, 

the ANN architecture needs to address the issues regarding,  
(1) the number of layers,  

(2) number of neurons in each layer, and  
(3) the hidden layer activation function.  

For any nonlinear function identification type problem, at 
least one hidden layer is required. Additionally, a nonlinear, 
continuously differentiable hidden layer activation function, 
such as the sigmoidal function, allows the network to perform 
nonlinear modeling. Depending on the application, the number 
of ANN inputs and the number of outputs are fixed. The only 
structural variable then remaining is the number of neurons m  
in the hidden layer. The ANN execution time and the training 
convergence is directly dependent on the value of m . Two 
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performance criteria for the measure of ANN training 
convergence are typically used; they are the absolute value of 
the tracking error eT  defined as 

                                       ˆ( )eT y y= −              (7) 

and the Mean Squared Error ( MSE ) defined as 

                                   
2

1

1 ˆ( )
r

MSE y y
r

= −∑            (8) 

where r is the number of training epochs.  The tracking error 
eT  varies at a high rate as training progresses. For this reason it 

is more convenient to consider the MSE  which is a smooth 
curve due to the averaging process.  In neural network training 
it is not possible to get the MSE  to be exactly  zero, so the 
objective is to get it down below some minimum value, 
typically ( 210minMSE −< ). This can be achieved by providing 
information to the neural network about the history of the 
system dynamics, typically in the form of delayed inputs and 
outputs.   

The number of neurons in the hidden layer affects the rate 
and the final value of the MSE  convergence, and is typically 
chosen on a heuristic basis after several iterations. For the 
specific problem presented in this paper, based on experimental 
data and experience, the following formula provides a starting 
point for choosing the number of neurons in the hidden layer. 

                                n
min

K * nH
C S MSE

≈
⋅ ⋅

                           (9) 

where nH  is the number of neurons in the hidden layer, C is 
the number of cycles of training data, minMSE  is the acceptable 
MSE  in training, S  is the number of samples per cycle of the 
acquired data, n  is the number of inputs and K is a constant 
depending on the number of inputs used and the sampling 
frequency of data . The above formula has been adapted from 
work of Baum and Haussler [18].  
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Figure 11.  Variation of MSE over different values of the number of neurons 
in the hidden layer for ANN1 

The data acquisition meter used at the site is an AVO 
Megger PA-9Plus meter with data sampling set at 256 samples/ 
cycle. Starting with random initial values for the ANN weights, 
and to achieve a minMSE  of 0.2% with data from 1 event (i.e. 6 
cycles), the value of K comes out to be 24. Substituting these 
values in (9), the value of nH is 23. Figure 11 shows the value 
of MSE for ANN1 obtained experimentally for different values 
of neurons in the hidden layer. For the work presented in this 
paper, the number of neurons used in the hidden layer is 20.  

IV. EXPERIMENTAL RESULTS 

A. Before source impedance change 
The method of using online trained ANNs to identify the 

load admittance and utilizing the trained neural network to 
estimate the true harmonic current injection of a customer, is 
demonstrated with the help of field data.  

The text readable field data from the AVO Megger PA-
9Plus meter is imported to MATLAB and is passed on to the 
neural network code. The powergui block of Simulink is used 
to calculate the voltage and current THD’s. These THD’s are 
then compared with values computed directly by the field 
instrument, in order to verify that both the values are the same.  

The phase A voltage and current data in Fig. 4 is used as 
the pilot data since that has the highest th9  order harmonic and 
also has the highest harmonic current distortion. This data is 
passed through a second order lowpass filter (implemented in 
Simulink) with cutoff frequency  2cf kH z=  in order to 
eliminate the high frequency components. The conditioned data 
is used to train the neural network ANN1 until the training 
error converges to near zero, and the output of ANN1 âi  
correctly tracks the actual phase A current ai  of the customer. 
Figure 12 indicates how well ANN1 has converged since its 
output âi  coincides with the actual ai waveform.  
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Figure 12.  Demonstration of ANN1 training: waveforms of ai  and 

âi coincide 
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The convergence of the training can also be verified by 
considering the Mean Squared Error MSE in Fig. 13 which has 
a value less than 210−  and almost constant after 400 epochs. 
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Figure 13.  Measure of ANN1 training convergence: MSE in current training 

Once the training error is below a pre-defined level minMSE   
( 210−< ), it can be concluded that ANN1 has learned the 
admittance of the customer load to an acceptable level of 
accuracy. The weights of ANN1 are now transferred to ANN2. 
While the ANN1 training continues, the computations of 
ANN2 are done offline. ANN2 is now supplied with a 
mathematically generated sine-wave voltage with zero 
distortion as its input. This is equivalent to the situation 
wherein the customer is getting a clean sine-wave voltage at its 
service entrance and the resonance point in the line along with 
other disturbances and supply harmonics are being avoided. 
Any load serviced by a utility is designed and optimized to 
operate at 60 Hz, however once it is connected to the power 
system network, it rarely receives a clean 60 Hz supply. The 
output of ANN2 is â distortedi −  and is shown in Fig. 14. 
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Figure 14.  Estimated phase A current when supplied with clean sine-wave 

In other words, the â distortedi −  waveform gives the same 
information that could have been obtained by quickly removing 
the customer from the line (if this were possible) and 
connecting a pure sinusoidal voltage source to the service 
entrance of the customer, except that it is not necessary to 
actually do this interruption. The frequency spectrum of the 

â distortedi − waveform is shown in Fig. 15. 

 

Figure 15.  FFT spectrum of the ANN2 predicted current waveform 

The true current distortion of the customer turns out to be 
3.02% in Fig. 15 instead of the 10.36% of Fig. 6. However a 
more significant finding from the FFT spectrum is the 
reduction of the th9 harmonic from 8.5% to about 1.5% of the 
fundamental.  

B. After source impedance change 
The source impedance switching by the utility detunes the 

resonance point in the feeder and that results in the reduction of 
the th9 harmonic from 8.5% to about 3.5% of the fundamental, 
as shown in Fig. 8. This result does show that for the particular 
operating point of the feeder, a resonance condition has a 
detrimental effect on the power distribution network and 
triggers the th9 harmonic in the customer’s current.  

Application of the load modeling tool shows that the 
th9 harmonic current is caused by both the customer and the 

utility and not just by the customer alone. 

V. CONCLUSIONS 
If individual harmonic current injections were known, then 

a utility could penalize the offending customer in some 
appropriate way, including say a special tariff or insist on 
corrective action by the customer. Simply measuring the 
harmonic currents for each individual customer is not 
sufficiently accurate since these harmonic currents may be 
caused by not only the nonlinear load, but also by a 
nonsinusoidal PCC voltage. 

This paper demonstrated the ability of MLPNs to learn the 
admittance of the customer load using actual field data and 
utilize a trained neural network for estimating the true 
harmonic distortion caused by that customer. The advantages 
of this method are that it can be implemented online without 
disrupting the operation of any load, since only voltages and 
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currents need to be measured; it does not require any special 
instruments, and it does not need to make any assumptions 
about any quantities, e.g. the impedance of the source, or a 
sine-wave PCC voltage. Every customer has individual power 
meters which are already receiving the waveforms of voltage 
and currents and hence it is a feasible option to implement the 
scheme for each customer individually. 

Standards like IEEE 519 provide guidelines for regulating 
harmonic distortion levels that divide the responsibility 
between the utility and the customer. The utility has to 
maintain voltage distortion at the PCC below the specified 
limits and the customer has to limit the amount of harmonic 
current injection onto the utility system. However, when certain 
unusual events like resonance occur in a power system, for 
instance, the load modeling tool provides a starting point for 
the troubleshooting to detect the origin of the problem. The 
information provided by the new method regarding the true 
current distortion of a load could be used to persuade an 
offending customer to take steps to mitigate an unacceptably 
high level of distortion.  

The load modeling tool is designed in software and hence 
can be integrated into any existing power quality diagnostic 
instrument or be fabricated as a standalone instrument that 
could be installed in substations of large customer loads, or 
used as a hand-held clip on instrument. 
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