83 research outputs found

    Draft genome sequences of Edwardsiella ictaluri strains LADL11-100 and LADL11-194 isolated from zebrafish Danio rerio

    Get PDF
    © 2015 Wang et al. Here, we report the draft genome sequences of Edwardsiella ictaluri strains LADL11-100 and LADL11-194, two isolates from natural outbreaks of edwardsiellosis in the zebrafish Danio rerio, as well as the sequences of the plasmids carried by the zebrafish strain of E. ictaluri

    Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism

    Get PDF
    Obesity and nutrient homeostasis are linked by mechanisms that are not fully elucidated. Here we describe a secreted protein, adropin, encoded by a gene, Energy Homeostasis Associated (Enho), expressed in liver and brain. Liver Enho expression is regulated by nutrition: lean C57BL/6J mice fed high-fat diet (HFD) exhibited a rapid increase, while fasting reduced expression compared to controls. However, liver Enho expression declines with diet-induced obesity (DIO) associated with 3 months of HFD or with genetically induced obesity, suggesting an association with metabolic disorders in the obese state. In DIO mice, transgenic overexpression or systemic adropin treatment attenuated hepatosteatosis and insulin resistance independently of effects on adiposity or food intake. Adropin regulated expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor gamma, a major regulator of lipogenesis. Adropin may therefore be a factor governing glucose and lipid homeostasis, which protects against hepatosteatosis and hyperinsulinemia associated with obesity. © 2008 Elsevier Inc. All rights reserved

    Mechanism of Neutralization of Herpes Simplex Virus by Antibodies Directed at the Fusion Domain of Glycoprotein B

    Get PDF
    Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE: For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen

    Dual targeting of mTOR/IL-17A and autophagy by fisetin alleviates psoriasis-like skin inflammation

    Get PDF
    Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperplasia and aberrant immune response. In addition to aberrant cytokine production, psoriasis is associated with activation of the Akt/mTOR pathway. mTOR/S6K1 regulates T-lymphocyte activation and migration, keratinocytes proliferation and is upregulated in psoriatic lesions. Several drugs that target Th1/Th17 cytokines or their receptors have been approved for treating psoriasis in humans with variable results necessitating improved therapies. Fisetin, a natural dietary polyphenol with anti-oxidant and anti-proliferative properties, covalently binds mTOR/S6K1. The effects of fisetin on psoriasis and its underlying mechanisms have not been clearly defined. Here, we evaluated the immunomodulatory effects of fisetin on Th1/Th17-cytokine-activated adult human epidermal keratinocytes (HEKa) and anti-CD3/CD28-stimulated inflammatory CD4+ T cells and compared these activities with those of rapamycin (an mTOR inhibitor). Transcriptomic analysis of HEKa revealed 12,713 differentially expressed genes (DEGs) in the fisetin-treated group compared to 7,374 DEGs in the rapamycin-treated group, both individually compared to a cytokine treated group. Gene ontology analysis revealed enriched functional groups related to PI3K/Akt/mTOR signaling pathways, psoriasis, and epidermal development. Using in silico molecular modeling, we observed a high binding affinity of fisetin to IL-17A. In vitro, fisetin significantly inhibited mTOR activity, increased the expression of autophagy markers LC3A/B and Atg5 in HEKa cells and suppressed the secretion of IL-17A by activated CD4+ T lymphocytes or T lymphocytes co-cultured with HEKa. Topical administration of fisetin in an imiquimod (IMQ)-induced mouse psoriasis model exhibited a better effect than rapamycin in reducing psoriasis-like inflammation and Akt/mTOR phosphorylation and promoting keratinocyte differentiation and autophagy in mice skin lesions. Fisetin also significantly inhibited T-lymphocytes and F4/80+ macrophage infiltration into skin. We conclude that fisetin potently inhibits IL-17A and the Akt/mTOR pathway and promotes keratinocyte differentiation and autophagy to alleviate IMQ-induced psoriasis-like disease in mice. Altogether, our findings suggest fisetin as a potential treatment for psoriasis and possibly other inflammatory skin diseases

    Channel catfish herpesvirus (CCV) encodes a functional thymidine kinase gene: Elucidation of a point mutation that confers resistance to Ara-T

    No full text
    The channel catfish herpesvirus (CCV) thymidine kinase (TK) gene was mapped on the CCV genome by marker rescue analysis using a TK-deficient channel catfish ovary cell line (CCO), a TK-negative CCV mutant, and a panel of cloned CCV genomic DNA fragments. The TK-deficient cell line (CCOBr) was isolated after repeated propagation of CCO cells in increasing concentrations of 5-bromo-2\u27-deoxyuridine. Infection of CCOBr cells with CCV produced high levels of TK activity. The TK- virus (CCVAr) was isolated after repeated propagation in the presence of the TK-activated antiherpetic agent, 1-β-D- arabinofuranosylthymine (Ara-T). A CCV genomic DNA library was constructed into cosmid pHC 79. Marker rescue analysis mapped the mutation within a 3.1- kb fragment located internal to the 18-kb repeat ends of the CCV genome. These genomic coordinates contained a putative TK gene identified by homology to other herpesvirus TK and cellular deoxycytidine kinase genes. DNA sequencing of the mapped coordinates identified the presence of a single mutation in the CCVAr mutant virus which resulted in a stop codon at amino acid position 97. These results functionally confirm that ORF 5 identified by Davison (Virology 186, 9-14, 1992) is the TK gene and show that CCV is amenable to marker rescue and marker transfer genetic analyses extensively used for investigations of the molecular biology of other herpesviruses. © 1994 Academic Press, Inc

    Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants.

    No full text
    In this paper we report the nucleotide sequence and predicted amino acid sequence of glycoprotein B of herpes simplex virus 1 strain F and the amino acid substitutions in the domains of the glycoprotein B gene of three mutants selected for resistance to monoclonal antibody H126-5 or H233 but not to both. Analyses of the amino acid sequence with respect to hydropathicity and secondary structure yielded a two-dimensional model of the protein. The model predicts an N-terminal, 29-amino-acid cleavable signal sequence, a 696-amino-acid hydrophilic surface domain containing six potential sites for N-linked glycosylation, a 69-amino-acid hydrophobic domain containing three segments traversing the membrane, and a charged 109-amino-acid domain projecting into the cytoplasm and previously shown to marker rescue glycoprotein B syn mutations. The nucleotide sequence of the mutant glycoprotein B DNA fragments previously shown to marker transfer or rescue the mutations revealed that the amino acid substitutions cluster in the hydrophilic surface domain between amino acids 273 and 305. Analyses of the secondary structure of these regions, coupled with the experimentally derived observation that the H126-5- and H233-antibody cognitive sites do not overlap, indicate the approximate locations of the epitopes of these neutralizing, surface-reacting, and immune-precipitating monoclonal antibodies. The predicted perturbations in the secondary structure introduced by the amino acid substitutions correlate with the extent of loss of reactivity with monoclonal antibodies in various immunoassays

    Resolution of Genotypic and Phenotypic Properties of Herpes Simplex Virus Type 1 Temperature-Sensitive Mutant (KOS) tsZ47: Evidence for Allelic Complementation in the UL28 Gene

    No full text
    Herpes simplex virus type 1 (HSV-1) mutant tsZ47 was reported to be temperature sensitive for virus growth and transport of viral glycoproteins to the cell surface and to contain two different mutations (B. A. Pancake, D. P. Aschman, and P. A. Schaffer, (1983) J. Virol. 47, 568-585). However, we found that similar amounts of glycoproteins B, C and H were expressed at the cell surface at the permissive and non-permissive temperatures and in addition, ts Z47 virus contained only a single mutation. UL28-null virus, gCΔ7B, failed to complement tsZ47 in mixed infections and ts Z47 replicated in UL28 but not gB transformed cell lines. A ts lesion of tsZ47 was mapped within a 1333 bp region of the UL28 gene by marker-rescue using overlapping DNA fragments. DNA sequencing identified a C to T transversion resulting in an R to W amino acid change at UL28 amino acid position 531. Southern Blot analysis and transmission electron microscopy demonstrated that tsZ47, is defective in cleavage and encapsidation of viral DNA. Mutant virus ts1203 (C. Addison, F. J. Rixon, and V. G. Preston, (1990) J. Gen. Virol. 71, 2377-2384) that contains a mutation in the 5′ end of UL28, complemented tsZ47 in mixed infections. This suggests that allelic complementation may be occurring and UL28 may encode a protein with independently functioning domains, or that it participates in a multimer. © 1993 Academic Press. All rights reserved
    • …
    corecore