11 research outputs found

    Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants

    Get PDF
    [FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex

    Synthetic Biology

    No full text

    His-Ligation to the [4Fe-4S] Subcluster Tunes the Catalytic Bias of [FeFe] Hydrogenase

    No full text
    [FeFe] hydrogenases interconvert H-2 into protons and electrons reversibly and efficiently. The active site H-cluster is composed of two sites: a unique [2Fe] subcluster ([2Fe](H)) covalently linked via cysteine to a canonical [4Fe-4S] cluster ([4Fe-4S](H)). Both sites are redox active and electron transfer is proton-coupled, such that the potential of the H-cluster lies very close to the H-2 thermodynamic potential, which confers the enzyme with the ability to operate quickly in both directions without energy losses. Here, one of the cysteines coordinating [4Fe-4S](H) (Cys362) in the [FeFe] hydrogenase from the green algae Chlamydomonas reinhardtii (CrHydAl) was exchanged with histidine and the resulting C362H variant was shown to contain a [4Fe-4S] cluster with a more positive redox potential than the wild-type. The change in the [4Fe-4S] cluster potential resulted in a shift of the catalytic bias, diminishing the H-2 production activity but giving significantly higher H-2 oxidation activity, albeit with a 200 mV overpotential requirement. These results highlight the importance of the [4Fe-4S] cluster as an electron injection site, modulating the redox potential and the catalytic properties of the H-cluster
    corecore