763 research outputs found

    Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel

    Get PDF
    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels

    Liquid Filled Microstructured Optical Fiber for X-Ray Detection

    Get PDF
    A liquid filled microstructured optical fiber (MOF) is used to detect x-rays. Numerical analysis and experimental observation leads to geometric fiber optics theory for MOF photon transmission. A model using this theory relates the quantity and energy of absorbed x-ray photons to transmitted MOF generated photons. Experimental measurements of MOF photon quantities compared with calculated values show good qualitative agreement. The difference between the calculated and measured values is discussed. 2010 Optical Society of Americ

    Chemical spray pyrolysis of Tl-Ba-Ca-Cu-O high-T(sub c) superconductors for high-field bitter magnets

    Get PDF
    The deposition of Tl-Ba-Ca-Cu-O thick films by spray pyrolyzing a Ba-Ca-Cu-O precursor film and diffusing thallium into the film to form the superconducting phase is examined. This approach was taken to reduce exposure to thallium and its health and safety hazards. The Tl-Ba-Ca-Cu-O system was selected because it has very attractive features which make it appealing to device and manufacturing engineering. Tl-Ba-Ca-Cu-O will accommodate a number of superconducting phases. This attribute makes it very forgiving to stoichiometric fluctuations in the bulk and film. It has excellent thermal and chemical stability, and appears to be relatively insensitive to chemical impurities. Oxygen is tightly bound into the systems, consequently there is no orthorhombic (conductor) to tetragonal (insulator) transition which would affect a component's lifetime. More significantly, the thallium based superconductors appear to have harder magnetic properties than the other high-Tc oxide ceramics. Estimates using magnetoresistance measurements indicate that at 77 K Tl2Ba2CaCu2O10 will have an upper critical field, H(sub c2) fo 26 Tesla for applied fields parallel to the c-axis and approximately 1000 Tesla for fields oriented in the a-b plane. Results to date have shown that superconducting films can be reproducibly deposited on 100 oriented MgO substrates. One film had a zero resistance temperature of 111.5 K. Furthermore, x ray diffraction analysis of the films showed preferential c-axis orientation parallel to the plane of the substrate. These results have now made it possible to consider the manufacture of a superconducting tape wire which can be configured into a topology useful for high-field magnet designs. The research which leads to the preparation of these films and plans for further development are reviewed

    Improvements in X-Ray Spectrometry for Planetary Surface Exploration

    Get PDF
    Recent innovations in X-ray instrumentation have enabled a new generation of planetary XRS instruments exhibiting performance matching terr estrial laboratory results

    PI 3-kinase- and ERK-MAPK-dependent mechanisms underlie Glucagon-Like Peptide-1-mediated activation of Sprague Dawley colonic myenteric neurons

    Get PDF
    Background: Glucagon-like peptide (GLP-1) can modify colonic function, with beneficial effects reported in the functional bowel disorder, irritable bowel syndrome (IBS). IBS pathophysiology is characterized by hyper-activation of the hypothalamic-pituitary-adrenal stress axis and altered microbial profiles. This study aims to characterize the neuronal and functional effects of GLP-1 in healthy rat colons to aid understanding of its beneficial effects in moderating bowel dysfunction. Methods: Immunofluorescent and calcium imaging of myenteric neurons prepared from Sprague Dawley rat colons was carried out to elucidate the neuromodulatory actions of the GLP-1 receptor agonist, exendin-4 (Ex-4). Colonic contractile activity was assessed using organ bath physiological recordings. Key results: Ex-4 induced an elevation of intracellular calcium arising from store release and influx via voltage-gated calcium channels. Ex-4 activated both ERK-MAPK and PI 3-kinase signaling cascades. Neuronal activation was found to underlie suppression of contractile activity in colonic circular muscle. Although the stress hormone, corticotropin-releasing factor (CRF) potentiated the neuronal response to Ex-4, and the functional effects of Ex-4 on colonic circular muscle activity were not altered. Conclusions and inferences: Ex-4 evoked neurally regulated suppression of rat colonic circular muscle activity. In myenteric neurons, the neurostimulatory effects of Ex-4 were dependent upon activation of PI 3-kinase and ERK-MAPK signaling cascades. No further change in circular muscle function was noted in the presence of CRF suggesting that stress does not impact on colonic function in health. Further studies in a model of IBS are needed to determine whether mechanisms are modified in the context of bowel dysfunction

    Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

    Full text link
    In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different ReRe numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective
    • …
    corecore