969 research outputs found
Near-Terminator Venus Ionosphere: Evidence for a Dawn/Dusk Asymmetry in the Thermosphere
Recent models of the near-terminator ionosphere of Venus constructed using neutral density profiles from the VTS3 model of Hedin et al. (1983) have shown that altitudes of the electron density peaks are in agreement with those measured by Pioneer Venus (PV) Orbiter Radio Occultation (ORO) and other radio occultation profiles in the solar zenith angle (SZA) range 60 to 70°, where they are near 140 km (Fox, 2007). The model peaks in the 75–85° range, however, do not decrease in altitude to near 135 km, as do the PV ORO electron density peaks shown in the study of Cravens et al. (1981). We investigate here possible reasons for this decrease. The PV Orbiter Neutral Mass Spectrometer (ONMS) measured densities of CO2, O, CO, N2, N, and He for many of the first 600 orbits. We have chosen 10 orbits in the dawn sector and 12 orbits in the dusk sector for which the solar zenith angles at periapsis were in the 75–85° range, and we have examined the ONMS density profiles reported in the PV Unified Abstract Data System. We find that for most of the orbits, the appropriately normalized ONMS measured densities for CO2 and O are, however, either similar to or larger than those generated from the VTS3 model for the same solar zenith angle and F 10.7 flux, and the use of these densities in our models would therefore produce a higher, rather than a lower, peak. The VTS3 models are, however, not expected to be accurate in the terminator region because of the small number of spherical harmonics used in the models and the large density changes that are expected near the terminators. We have also investigated a possible dawn/dusk asymmetry in the ionosphere. All the low-altitude PV radio occultation electron density peaks reported in the study of Cravens et al. (1981) in the 70 to 85° range were in the dawn sector at high latitudes. In the VTS3 models, the exospheric temperatures are predicted to be smaller at dawn that at dusk, but the asymmetries are confined to the region above ∼165 km. Thus use of the VTS3 model densities and temperatures in the near-terminator dawn sector models cannot produce electron density peaks that are lower in altitude than those in the dusk sector. We suggest that there is a high-latitude asymmetry between the dawn and dusk neutral densities that extends down to within ∼20 km above the expected altitude of the electron density peaks, and that produces a significantly asymmetrical ionosphere
A room temperature 19-channel magnetic field mapping device for cardiac signals
We present a multichannel cardiac magnetic field imaging system built in
Fribourg from optical double-resonance Cs vapor magnetometers. It consists of
25 individual sensors designed to record magnetic field maps of the beating
human heart by simultaneous measurements on a grid of 19 points over the chest.
The system is operated as an array of second order gradiometers using
sophisticated digitally controlled feedback loops.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter
Inflation Pressure Effects in the Nondimensional Tire Model
Inflation pressure affects every aspect of tire performance. Most tire models, including the Radt/Milliken Nondimensional Tire Model, are restricted to modeling a single inflation pressure at a time. This is a reasonable limitation, in that the Nondimensional model forms an input/output relationship between tire operating conditions and force & moment outputs. Traditional operating conditions are normal load, slip angle, inclination angle, slip ratio and road surface friction coefficient. Tire pressure is more like a tire parameter than a tire operating condition. Since the Nondimensional Tire Model is semi-empirical it does not specifically deal with tire parameters like sidewall height or tread compound. Still, tire pressure is the easiest tire parameter to change, and as the air temperature within the tire varies during use so does the inflation pressure. Thus, it is desirable to incorporate inflation pressure into the Nondimensional Tire Model as an input. This paper discusses the effects of tire pressure on tire force and moment output. Effects on lateral force and aligning torque are investigated in detail. Additionally, the effects on cornering stiffness, friction coefficients, peak aligning torque coefficient and peak shape are reviewed. New techniques to implement pressure effects in the Nondimensional Model are presented. Applications of these techniques are shown on a Formula SAE tire and a full-size radial racing tire. Additionally, the effects of inflation pressure on tire spring rate and loaded radius are investigated. While these are not modeled using Nondimensional techniques, they are important variables accompanying any tire model
Evanescent quadrupole polariton
In the work we demonstrate the formation of new type of polariton on the
interface between a cuprous oxide slab and a polystyrene micro-sphere placed on
the slab. The evanescent field of the resonant whispering gallery mode (WGM)
has a substantial gradient, and therefore effectively couples with the
quadrupole excitons in cuprous oxide. This evanescent polariton has a long
life-time (), which is determined only by its excitonic component. The
polariton lower branch has a well pronounced minimum. This suggests that this
excitation can be utilized for BEC. The spatial coherence of the polariton can
be improved by assembling the micro-spheres in a linear chain.Comment: 4 pages, 3 figures; APS/PREPRIN
Nonassociative strict deformation quantization of C*-algebras and nonassociative torus bundles
In this paper, we initiate the study of nonassociative strict deformation
quantization of C*-algebras with a torus action. We shall also present a
definition of nonassociative principal torus bundles, and give a classification
of these as nonassociative strict deformation quantization of ordinary
principal torus bundles. We then relate this to T-duality of principal torus
bundles with -flux. We also show that the Octonions fit nicely into our
theory.Comment: 15 pages, latex2e, exposition improved, to appear in LM
Tire Asymmetries and Pressure Variations in the Radt/Milliken Nondimensional Tire Model
The Nondimensional Tire Model is based on the idea of data compression to load-independent curves. Through the use of appropriate transforms, tire data can be manipulated such that, when plotted in nondimensional coordinates, all data falls on a single curve. This leads to a highly efficient and mathematically consistent tire model. In the past, data for slip angle and slip ratio has been averaged across positive and negative values for use with the transforms. In this paper, techniques to handle tire asymmetries in lateral and longitudinal force are presented. This is an important advance, since in passenger cars driving/braking data is almost always asymmetric and, depending on tire construction, lateral force data may follow likewise. In addition, this paper is the first to explore the inclusion of inflation pressure as an operating variable in the Nondimensional Tire Theory. Inflation pressure affects the shape of the tire curves, notably the linear range stiffness and peak force friction coefficient. With this new variable, the operating conditions addressed by Nondimensional Tire Theory now include slip angle, slip ratio, inclination angle, normal load, surface friction coefficient and inflation pressure
A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair
Nucleotide excision repair (NER) is a DNA repair pathway present in all domains of life. In bacteria, UvrA protein localizes the DNA lesion, followed by verification by UvrB helicase and excision by UvrC double nuclease. UvrA senses deformations and flexibility of the DNA duplex without precisely localizing the lesion in the damaged strand, an element essential for proper NER. Using a combination of techniques, we elucidate the mechanism of the damage verification step in bacterial NER. UvrA dimer recruits two UvrB molecules to its two sides. Each of the two UvrB molecules clamps a different DNA strand using its \u3b2-hairpin element. Both UvrB molecules then translocate to the lesion, and UvrA dissociates. The UvrB molecule that clamps the damaged strand gets stalled at the lesion to recruit UvrC. This mechanism allows UvrB to verify the DNA damage and identify its precise location triggering subsequent steps in the NER pathway
On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types
It is not widely appreciated that many subtleties are involved in the
accurate measurement of intensity-correlated photons; even for the original
experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of
single-photon avalanche diodes (SPADs), together with an off-chip algorithm for
processing streaming data, we investigate the difficulties of measuring
second-order photon correlations g2 in a wide variety of light fields that
exhibit dramatically different correlation statistics: a multimode He-Ne laser,
an incoherent intensity-modulated lamp-light source and a thermal light source.
Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in
any observation interval, with photon fluxes limited by detector saturation, in
such a way that a correctly normalized g2 function is guaranteed. The impact of
detector background correlations between SPAD pixels and afterpulsing effects
on second-order coherence measurements is discussed. These results demonstrate
that our monolithic SPAD array enables access to effects that are otherwise
impossible to measure with stand-alone detectors.Comment: 17 pages, 6 figure
- …