787 research outputs found

    Use of spatial information in 2D SEMG array decomposition

    Get PDF
    A new feature extraction/classification method for High Density surface ElectroMyoGraphy (HD sEMG) Motor Unit Aciton Potential (MUAP) decomposition using 2D shape and energy distribution features is presented and experimentally tested.\u

    Odyssey Towards a Sirenic Thinking: An Attempt at a Self-Criticism of the Listening Paradigm Within Sound Studies

    Get PDF
    This text departs from a contradictory claim in deaf studies and sound studies: both disciplines describe a hierarchical regime of the sensible – visuocentrism and audiocentrism – which they try to counter with conceptualisations as “acoustemology” or “deaf gain.” However, as we argue, they both thereby erect what they claim to overcome: a sensual regime that privileges one sense over another and a restricted conception of subjectivity deriving from it. First, we draw a philosophical line in the critique of sensual regimes. Then we propose a figure for the transcendence of the separation of the sensible: in re-reading of the myth of Odysseus and the sirens, we engage various examples from literature, art, and acoustics to describe sirens as a mythological and technical archetype of the transcendence of the sensual regime, as well as reified subjectivity. The question, then, is not how to escape the sirens, but how they can be approached. It is necessary, we argue, for sound studies to develop a critical self-consciousness of its own restricted concepts in order to move from sonic thinking towards a sirenic thinking

    Logarithmically-concave moment measures I

    Full text link
    We discuss a certain Riemannian metric, related to the toric Kahler-Einstein equation, that is associated in a linearly-invariant manner with a given log-concave measure in R^n. We use this metric in order to bound the second derivatives of the solution to the toric Kahler-Einstein equation, and in order to obtain spectral-gap estimates similar to those of Payne and Weinberger.Comment: 27 page

    Data-driven efficient score tests for deconvolution problems

    Full text link
    We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution with the known noise density and efficient score tests for the case of unknown density. The tests are incorporated with model selection rules to choose reasonable model dimensions automatically by the data. Consistency of the tests is proved

    Maximizing the Conditional Expected Reward for Reaching the Goal

    Full text link
    The paper addresses the problem of computing maximal conditional expected accumulated rewards until reaching a target state (briefly called maximal conditional expectations) in finite-state Markov decision processes where the condition is given as a reachability constraint. Conditional expectations of this type can, e.g., stand for the maximal expected termination time of probabilistic programs with non-determinism, under the condition that the program eventually terminates, or for the worst-case expected penalty to be paid, assuming that at least three deadlines are missed. The main results of the paper are (i) a polynomial-time algorithm to check the finiteness of maximal conditional expectations, (ii) PSPACE-completeness for the threshold problem in acyclic Markov decision processes where the task is to check whether the maximal conditional expectation exceeds a given threshold, (iii) a pseudo-polynomial-time algorithm for the threshold problem in the general (cyclic) case, and (iv) an exponential-time algorithm for computing the maximal conditional expectation and an optimal scheduler.Comment: 103 pages, extended version with appendices of a paper accepted at TACAS 201

    Quantum Process Tomography: Resource Analysis of Different Strategies

    Get PDF
    Characterization of quantum dynamics is a fundamental problem in quantum physics and quantum information science. Several methods are known which achieve this goal, namely Standard Quantum Process Tomography (SQPT), Ancilla-Assisted Process Tomography (AAPT), and the recently proposed scheme of Direct Characterization of Quantum Dynamics (DCQD). Here, we review these schemes and analyze them with respect to some of the physical resources they require. Although a reliable figure-of-merit for process characterization is not yet available, our analysis can provide a benchmark which is necessary for choosing the scheme that is the most appropriate in a given situation, with given resources. As a result, we conclude that for quantum systems where two-body interactions are not naturally available, SQPT is the most efficient scheme. However, for quantum systems with controllable two-body interactions, the DCQD scheme is more efficient than other known QPT schemes in terms of the total number of required elementary quantum operations.Comment: 15 pages, 5 figures, published versio

    Percolation in invariant Poisson graphs with i.i.d. degrees

    Full text link
    Let each point of a homogeneous Poisson process in R^d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution mu on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution mu. Leaving aside degenerate cases, we prove that for any mu there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme that is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on mu for the absence and presence of infinite components

    Condensation in randomly perturbed zero-range processes

    Full text link
    The zero-range process is a stochastic interacting particle system that exhibits a condensation transition under certain conditions on the dynamics. It has recently been found that a small perturbation of a generic class of jump rates leads to a drastic change of the phase diagram and prevents condensation in an extended parameter range. We complement this study with rigorous results on a finite critical density and quenched free energy in the thermodynamic limit, as well as quantitative heuristic results for small and large noise which are supported by detailed simulation data. While our new results support the initial findings, they also shed new light on the actual (limited) relevance in large finite systems, which we discuss via fundamental diagrams obtained from exact numerics for finite systems.Comment: 18 pages, 6 figure

    New distance measures for classifying X-ray astronomy data into stellar classes

    Full text link
    The classification of the X-ray sources into classes (such as extragalactic sources, background stars, ...) is an essential task in astronomy. Typically, one of the classes corresponds to extragalactic radiation, whose photon emission behaviour is well characterized by a homogeneous Poisson process. We propose to use normalized versions of the Wasserstein and Zolotarev distances to quantify the deviation of the distribution of photon interarrival times from the exponential class. Our main motivation is the analysis of a massive dataset from X-ray astronomy obtained by the Chandra Orion Ultradeep Project (COUP). This project yielded a large catalog of 1616 X-ray cosmic sources in the Orion Nebula region, with their series of photon arrival times and associated energies. We consider the plug-in estimators of these metrics, determine their asymptotic distributions, and illustrate their finite-sample performance with a Monte Carlo study. We estimate these metrics for each COUP source from three different classes. We conclude that our proposal provides a striking amount of information on the nature of the photon emitting sources. Further, these variables have the ability to identify X-ray sources wrongly catalogued before. As an appealing conclusion, we show that some sources, previously classified as extragalactic emissions, have a much higher probability of being young stars in Orion Nebula.Comment: 29 page

    Cutting edges at random in large recursive trees

    Get PDF
    We comment on old and new results related to the destruction of a random recursive tree (RRT), in which its edges are cut one after the other in a uniform random order. In particular, we study the number of steps needed to isolate or disconnect certain distinguished vertices when the size of the tree tends to infinity. New probabilistic explanations are given in terms of the so-called cut-tree and the tree of component sizes, which both encode different aspects of the destruction process. Finally, we establish the connection to Bernoulli bond percolation on large RRT's and present recent results on the cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure
    • …
    corecore