74 research outputs found

    Immunohistology and remodeling in fatal pediatric and adolescent asthma

    Get PDF
    Background: Thickening of reticular basement membrane, increased airway smooth muscle mass and eosinophilic inflammation are found in adult fatal asthma. At the present study the histopathology of fatal paediatric and adolescent asthma is evaluated. Methods: Post-mortem lung autopsies from 12 fatal asthma cases and 8 non-asthmatic control subjects were examined. Thickness of reticular basement membrane (RBM) and percentage of airway smooth muscle (ASM%) mass area were measured and inflammatory cells were counted. Patient records were reviewed for clinical history. Results: The age range of the cases was from 0.9 to 19.5 years, eight were males and five had received inhaled corticosteroids. Thickened RBM was detected in majority of the cases without any correlation to treatment delay, age at onset of symptoms or diagnosis. In the large airways ASM was clearly increased in one third of the cases whereas the median ASM% did not differ from that in healthy controls (14.0% vs. 14.0%). In small airways no increase of ASM was found, instead mucous plugs were seen in fatal asthma. The number of eosinophils, plasmacytoid dendritic cells, macrophages, and B-cells were significantly increased in fatal asthma cases compared with controls and the two latter correlated with the length of the fatal exacerbation. Conclusions: The findings highlight the strong presence of eosinophils and mucous plugs even in small airways in children and adolescents with fatal asthma. Thickened RBM was obvious in majority of the patients. Contrary to our hypothesis, increased ASM% was detected in only one third of the patients.Peer reviewe

    BPIFB1 is a lung-specific autoantigen associated with interstitial lung disease.

    Get PDF
    Interstitial lung disease (ILD) is a complex and heterogeneous disorder that is often associated with autoimmune syndromes. Despite the connection between ILD and autoimmunity, it remains unclear whether ILD can develop from an autoimmune response that specifically targets the lung parenchyma. We examined a severe form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), and established a strong link between an autoimmune response to the lung-specific protein BPIFB1 (bactericidal/permeability-increasing fold-containing B1) and clinical ILD. Screening of a large cohort of APS1 patients revealed autoantibodies to BPIFB1 in 9.6% of APS1 subjects overall and in 100% of APS1 subjects with ILD. Further investigation of ILD outside the APS1 disorder revealed BPIFB1 autoantibodies present in 14.6% of patients with connective tissue disease-associated ILD and in 12.0% of patients with idiopathic ILD. The animal model for APS1, Aire⁻/⁻ mice, harbors autoantibodies to a similar lung antigen (BPIFB9); these autoantibodies are a marker for ILD. We found that a defect in thymic tolerance was responsible for the production of BPIFB9 autoantibodies and the development of ILD. We also found that immunoreactivity targeting BPIFB1 independent of a defect in Aire also led to ILD, consistent with our discovery of BPIFB1 autoantibodies in non-APS1 patients. Overall, our results demonstrate that autoimmunity targeting the lung-specific antigen BPIFB1 may contribute to the pathogenesis of ILD in patients with APS1 and in subsets of patients with non-APS1 ILD, demonstrating the role of lung-specific autoimmunity in the genesis of ILD

    Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism.

    Get PDF
    Cytochrome P450 2C8 (CYP2C8) plays a major role in the metabolism of therapeutically important drugs which exhibit large interindividual differences in their pharmacokinetics. In order to evaluate any genetic influence on this variation, a CYP2C8 phenotype-genotype evaluation was carried out in Caucasians. Two novel CYP2C8 haplotypes, named B and C with frequencies of 24 and 22% in Caucasians, respectively, were identified and caused a significantly increased and reduced paclitaxel 6alpha-hydroxylation, respectively, as evident from analyses of 49 human liver samples. In healthy white subjects, CYP2C8*3 and the two novel haplotypes significantly influenced repaglinide pharmacokinetics in SLCO1B1c.521T/C heterozygous individuals: haplotype B was associated with reduced and haplotype C with increased repaglinide AUC (0-infinity). Functional studies suggested -271C>A (CYP2C8*1B) as a causative SNP in haplotype B. In conclusion, two novel common CYP2C8 haplotypes were identified and significantly associated with altered rate of CYP2C8-dependent drug metabolism in vitro and in vivo.This study was supported by grants from The Swedish Research Council, The Swedish Cancer Foundation, Cristina Rodríguez-Antona's Marie Curie Fellowships of the European Community contract numbers QLG5-CT-2002-51733 and MERG-CG-6-2005-014881, the ‘Ramon y Cajal’ programme from the Spanish Ministry of Education and Science, and the Sigrid Juselius Foundation (Helsinki, Finland).S
    • 

    corecore