2,438 research outputs found

    Spin Sum Rules at Low Q2Q^2

    Full text link
    Recent precision spin-structure data from Jefferson Lab have significantly advanced our knowledge of nucleon structure at low Q2Q^2. Results on the neutron spin sum rules and polarizabilities in the low to intermediate Q2Q^2 region are presented. The Burkhardt-Cuttingham Sum Rule was verified within experimental uncertainties. When comparing with theoretical calculations, results on spin polarizability show surprising disagreements with Chiral Perturbation Theory predictions. Preliminary results on first moments at very low Q2Q^2 are also presented.Comment: 4 pages, to be published in the Proceedings of the 10th Conference on Intersections of Nuclear and Particle Physics (CIPANP

    Phase transition in site-diluted Josephson junction arrays: A numerical study

    Full text link
    We numerically investigate the intriguing effects produced by random percolative disorder in two-dimensional Josephson-junction arrays. By dynamic scaling analysis, we evaluate critical temperatures and critical exponents with high accuracy. It is observed that, with the introduction of site-diluted disorder, the Kosterlitz-Thouless phase transition is eliminated and evolves into a continuous transition with power-law divergent correlation length. Moreover, genuine depinning transition and creep motion are studied, evidence for distinct creep motion types is provided. Our results not only are in good agreement with the recent experimental findings, but also shed some light on the relevant phase transitions.Comment: 7 pages, 8 figures, Phys. Rev. B (in press

    Study on the collision-mechanical properties of tomatoes gripped by harvesting robot fingers

    Get PDF
    The data of collision-mechanical property of tomatoes gripped by robot fingers are important for the gripping control of tomato harvesting robot. In the study, tests of controlling the fingers to grip tomatoes were conducted to ascertain the effects of input current, motor speed and impact positions on the impact force of fingers and maximum deformation of tomatoes. The input current of the motor ranged from 1200 to 2100 mA, the motor speed from 25 to 3000 rpm and the three impact positions as follows, 1 (radial arm), 2 (sloping at an angle of 22.5° to the radial arm) and 3 (sloping at an angle of 45° to the radial arm). The results shown that under the condition of the same motor speed and inputcurrent, the peak impact force on the radial arm, compared with other impact positions, was maximum, the deformation of tomato was the smallest and the degree of mechanical damage was the lowest too.Under different speed and input current conditions, when the fingers grip the tomato on the radial arm, the peak force of fingers and the maximum deformation of tomatoes were highly influenced by the motor speed and input current, especially the input current. The peak impact force and the maximum deformation of the tomato increased respectively with increase in the motor speed and input current and these followed cubic polynomial regression equations

    Atomic Scale Sliding and Rolling of Carbon Nanotubes

    Get PDF
    A carbon nanotube is an ideal object for understanding the atomic scale aspects of interface interaction and friction. Using molecular statics and dynamics methods different types of motion of nanotubes on a graphite surface are investigated. We found that each nanotube has unique equilibrium orientations with sharp potential energy minima. This leads to atomic scale locking of the nanotube. The effective contact area and the total interaction energy scale with the square root of the radius. Sliding and rolling of nanotubes have different characters. The potential energy barriers for sliding nanotubes are higher than that for perfect rolling. When the nanotube is pushed, we observe a combination of atomic scale spinning and sliding motion. The result is rolling with the friction force comparable to sliding.Comment: 4 pages (two column) 6 figures - one ep

    Counting Rule for Hadronic Light-Cone Wave Functions

    Get PDF
    We introduce a systematic way to write down the Fock components of a hadronic light-cone wave function with nn partons and orbital angular momentum projection lzl_z. We show that the wave function amplitude ψn(xi,ki,lzi)\psi_n(x_i,k_{i\perp},l_{zi}) has a leading behavior 1/(k2)[n+lz+min(n+lz)]/211/(k^2_\perp)^{[n+|l_z|+{\rm min}(n'+|l_z'|)]/2-1} when all parton transverse momenta are uniformly large, where nn' and lzl_z' are the number of partons and orbital angular momentum projection, respectively, of an amplitude that mixes under renormalization. The result can be used as a constraint in modeling the hadronic light-cone wave functions. We also derive a generalized counting rule for hard exclusive processes involving parton orbital angular momentum and hadron helicity flip.Comment: 7 pages, no figur

    Antibacterial Mechanism of the Ehyl Acetate Extracts From Naked Oat Again Bacillus Subtilis

    Get PDF
    The antibacterial mechanism of the ethyl acetate extracts from naked oat against Bacillus subtilis were studied in this paper based on assays such as cell wall alkaline phosphatase (AKP), permeability and integrity of cell membrane as well as electron microscopy observations. The results showed that the ethyl acetate extracts had significant effects on AKP, permeability and integrity of cell membrane. We concluded that the mechanism of action of the ethyl acetate extracts against B. subtilis might be described as:Acting on cell wall and membrane, resulting in disruption, cell lysis, and the leakage of intracellular constituents according to the results of AKP, the leakage of electrolytes, the losses of contents (proteins, reducing sugars and 260 nm absorbing materials) assays and electron microscopy observations. Overall, the results clearly indicated that the ethyl acetate extracts from naked oat was potential to control the contamination of foods caused by bacterial disease

    An experimental observation of geometric phases for mixed states using NMR interferometry

    Get PDF
    Examples of geometric phases abound in many areas of physics. They offer both fundamental insights into many physical phenomena and lead to interesting practical implementations. One of them, as indicated recently, might be an inherently fault-tolerant quantum computation. This, however, requires to deal with geometric phases in the presence of noise and interactions between different physical subsystems. Despite the wealth of literature on the subject of geometric phases very little is known about this very important case. Here we report the first experimental study of geometric phases for mixed quantum states. We show how different they are from the well understood, noiseless, pure-state case.Comment: 4 pages, 3 figure

    A novel quantum key distribution scheme with orthogonal product states

    Get PDF
    The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that this protocol has many distinct features such as great capacity, high efficiency. The generalization to nxn systems is also discussed and a fancy limitation for the eavesdropper's success probability is reached.Comment: 4 Pages, 3 Figure

    Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary and Beibu Gulf, China

    Get PDF
    Grants for this study was provided by the National Natural Science Foundation (NNSF) of China (Grant No.31070347), the Ministry of Science and Technology of China (Grant No. 2011BAG07B05-3), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-EW-Z-4) and the Special Fund for Agro-scientific Research in the Public Interest of the Ministry of Agriculture of China (Grant No. 201203086) to DW, the State Oceanic Administration of China (Grant No. 201105011-3) and NNSF of China (Grant No. 31170501) to KXW and the China Scholarship Council (Grant No. (2014)3026) to ZTW.Background . Knowledge of species-specific vocalization characteristics and their associated active communication space, the effective range over which a communication signal can be detected by a conspecific, is critical for understanding the impacts of underwater acoustic pollution, as well as other threats. Methods. We used a two-dimensional cross-shaped hydrophone array system to record the whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in shallow-water environments of the Pearl River Estuary (PRE) and Beibu Gulf (BG), China. Using hyperbolic position fixing, which exploits time differences of arrival of a signal between pairs of hydrophone receivers, we obtained source location estimates for whistles with good signal-to-noise ratio (SNR  ≥ 10 dB) and not polluted by other sounds and back-calculated their apparent source levels (ASL). Combining with the masking levels (including simultaneous noise levels, masking tonal threshold, and the Sousa auditory threshold) and the custom made site-specific sound propagation models, we further estimated their active communication space (ACS). Results. Humpback dolphins produced whistles with average root-mean-square ASL of 138.5 ± 6.8 (mean ± standard deviation) and 137.2 ± 7.0 dB re 1 µPa in PRE (N = 33) and BG (N = 209), respectively. We found statistically significant differences in ASLs among different whistle contour types. The mean and maximum ACS of whistles were estimated to be 14.7 ± 2.6 (median ± quartile deviation) and 17.1 ± 3.5 m in PRE, and 34.2 ± 9.5 and 43.5 ±12.2 m in BG. Using just the auditory threshold as the masking level produced the mean and maximum ACSat of 24.3 ± 4.8 and 35.7 ± 4.6 m for PRE, and 60.7 ± 18.1 and 74.3 ± 25.3 m for BG. The small ACSs were due to the high ambient noise level. Significant differences in ACSs were also observed among different whistle contour types. Discussion. Besides shedding some light for evaluating appropriate noise exposure levels and information for the regulation of underwater acoustic pollution, these baseline data can also be used for aiding the passive acoustic monitoring of dolphin populations, defining the boundaries of separate groups in a more biologically meaningful way during field surveys, and guiding the appropriate approach distance for local dolphin-watching boats and research boat during focal group following.Publisher PDFPeer reviewe
    corecore