10,932 research outputs found

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    Thermophysical properties of near-Earth asteroid (341843) 2008 EV5 from WISE data

    Full text link
    Aims. To derive the thermal inertia of 2008 EV5_5, the baseline target for the Marco Polo-R mission proposal, and infer information about the size of the particles on its surface. Methods. Values of thermal inertia are obtained by fitting an asteroid thermophysical model to NASA's Wide-field Infrared Survey Explorer (WISE) infrared data. From the constrained thermal inertia and a model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles), grain size is derived. Results. We obtain an effective diameter D=370±6 mD = 370 \pm 6\,\mathrm{m}, geometric visible albedo pV=0.13±0.05p_V = 0.13 \pm 0.05 (assuming H=20.0±0.4H=20.0 \pm 0.4), and thermal inertia Γ=450±60\Gamma = 450 \pm 60 J/m2/s(1/2)/K at the 1-σ\sigma level of significance for its retrograde spin pole solution. The regolith particles radius is r=6.6−1.3+1.3r = 6.6^{+1.3}_{-1.3} mm for low degrees of compaction, and r=12.5−2.6+2.7r = 12.5^{+2.7}_{-2.6} mm for the highest packing densities.Comment: 16 pages, 8 figures; accepted for publication in Astronomy & Astrophysic

    Golden Ratio Prediction for Solar Neutrino Mixing

    Full text link
    It has recently been speculated that the solar neutrino mixing angle is connected to the golden ratio phi. Two such proposals have been made, cot theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group D_{10}. This symmetry is a natural candidate because the angle in the expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the exterior angle of a decagon and D_{10} is its rotational symmetry group. We also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio

    A cold cathode ion source mass spectrometer employing ion counting techniques

    Get PDF
    Design and construction of mass spectrometer using cold cathode source of ions, quadrupole mass analyzer, and ion counting detector

    A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids

    Full text link
    Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding states approach. This assumes that all pair correlation functions gαβ(r)g_{\alpha \beta}(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic fluids a {\it scaling approximation} (SA) successfully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by solving the Orstein-Zernike (OZ) integral equations coupled with an approximate closure. The SA is first tested within the mean spherical approximation (MSA) closure, which allows analytical solutions. The results are found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown to be an improvement over the ``decoupling approximation'' extended to the ionic case. The simplicity of the SA scheme allows its application also when the OZ equations can be solved only numerically. An example is then given by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach, its possible use in the analysis of experimental scattering data and other related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty, to appear in Phys. Rev. E (1999
    • …
    corecore