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Abstract. The problem of equilibrium of a plasma in a Tokamak is a free boundary problem
described by the Grad-Shafranov equation in axisymmetric configurations. The right hand side
of this equation is a non linear source, which represents the toroidal component of the plasma
current density. This paper deals with the real time identification of this non linear source from
experimental measurements. The proposed method is based on a fixed point algorithm, a finite
element resolution, a reduced basis method and a least-square optimization formulation.

1. Introduction

In Tokamaks, a magnetic field is used to confine a plasma in a toroidal vacuum vessel. The
magnetic field is produced by external coils surrounding the vacuum vessel and a current
circulating in the plasma, forming a helicoidal resulting magnetic field. At equilibrium, magnetic
field lines lie on isosurfaces forming a family of nested tori and called magnetic surfaces. These
magnetic surfaces enable to define the magnetic axis and the plasma boundary. The innermost
magnetic surface which degenerates into a closed curve is called magnetic axis. The plasma
boundary corresponds to the surface in contact with a limiter or being a magnetic separatrix
(hyperbolic line with an X-point).
Denote by j the current density, B the magnetic field and p the kinetic pressure. The equilibrium
of the plasma in presence of a magnetic field is described by

j = ∇×
B

µ
, (1)

j ×B = ∇p, (2)

∇ ·B = 0, (3)

where µ is the magnetic permeability. Equation (1) is Ampere’s theorem and equation (3)
represents the conservation of magnetic induction. Equation (2) means that at equilibrium the
Lorentz force j×B balances the force ∇p due to kinetic pressure. From this equation it is clear
that

B · ∇p = 0 and j · ∇p = 0. (4)

Thus, p is constant along magnetic field lines and current lines which consequently lie on
magnetic surfaces.
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Figure 1. Toroidal geometry.

Consider the cylindrical coordinate system (r, z, φ). Under axisymmetrical hypothesis, the
magnetic field is supposed to be independent of the toroidal angle φ and can be decomposed in
the form



















B = BP + BT

BP =
1

r
[∇ψ × eφ]

BT =
f

r
eφ

(5)

where BP and BT are respectively the poloidal and the toroidal component of the magnetic
field, eφ is a unit vector in direction φ,the term ψ(r, z) is the poloidal magnetic flux function
(see Figure 1) and f is the poloidal current flux function. The magnetic surfaces are defined
by rotation of the flux lines ψ = constant around the vertical axis (Oz). Using (5), equations
(1)-(3) lead to the Grad-Shafranov equation (see [1, 2, 3])

− ∆∗ψ = rp′(ψ) +
1

µ0r
(ff ′)(ψ) (6)

where

∆∗. =
∂

∂r
(

1

µ0r

∂.

∂r
) +

∂

∂z
(

1

µ0r

∂.

∂z
). (7)

and µ0 is the magnetic permeability of the vacuum. Thus, under axisymmetric hypothesis, the
three dimensional equilibrium (1)-(3) reduces to solve a two dimensional non-linear problem.
Note that the right hand side of (6) represents the toroidal component jφ of the plasma current
density which is determinated by p′, f and f ′.
In this paper, we are interested in the numerical reconstruction of the plasma current density
and of the equilibrium (6) (see [4, 5, 6]). This reconstruction has to be achieved in real time
from experimental measurements. The main difficulty consists in identifying the functions p′

and ff ′ in the non linear source term of (6). An iterative strategy involving a finite element
method to solve the direct problem (6) and a least square optimisation procedure to identify the
non linearity using reduced basis is proposed. A description of the experimental measurements
available in Tokamaks is given in Section 2. Section 3 is devoted to the statement of the
mathematical problem and the numerical algorithm proposed. Numerical results obtained with
the software Equinox are presented in Section 4.

2. Experimental measurements

Although p and f cannot be directly measured in a Tokamak, several measurements are available
(see Figure 2):



• magnetic measurements: the flux loops provide Dirichlet condition ψ = h and magnetic

probes Neumann condition
1

r

∂ψ

∂n
= g on the walls of the vacuum vessel which represent the

boundary of the computational domain. These measurements are given at some discrete
points Ni and the Dirichlet full boundary data are obtained by interpolation.

• polarimetric measurements: this measurement gives the value of the integral along a family
of chords Ci

∫

Ci

ne

r

∂ψ

∂n
dl = αi.

ne(ψ) is the electronic density which is approximately constant on each flux line,
∂ψ

∂n
is the

normal derivative of ψ along the chord Ci.

• interferometric measurements: they give the values of the integrals

∫

Ci

ne dl = βi.

• current measurements: they give the value of the total plasma current Ip defined by

Ip =

∫

Ωp

jφdx.

Other measurements are potentially available but are not used for the moment in the software
Equinox.

Figure 2. Left: the straight green lines represent the chords used for polarimetry and
interferometry measurements. Right: part of the vacuum vessel including the magnetic
measurements. At the bottom middle an example of finite element mesh used for numerical
simulations.

3. Algorithm and numerical resolution

Let Ω be the domain representing the vacuum vessel of the Tokamak, and ∂Ω its boundary. The
equilibrium of a plasma in a Tokamak is a free boundary problem. The plasma boundary is



determinated either by its contact with a limiter D or as being a magnetic separatrix with an
X-point (hyperbolic point). The region Ωp ⊂ Ω containing the plasma is defined by

Ωp = {x ∈ Ω, ψ(x) ≥ ψb}

where ψb = maxD ψ in the limiter configuration or ψb = ψ(X) when an X-point exists.
In the vacuum region, the right hand side of (6) vanishes and the equilibrium reads

∆∗ψ = 0 in Ω \ Ωp

Consider the following notations: ψ̄ =
ψ − max

Ω
ψ

ψb − max
Ω

ψ
∈ [0, 1] in Ωp , A(ψ̄) =

R0

λ
p′(ψ) and

B(ψ̄) =
1

λµ0R0

(ff ′)(ψ). The functions A and B are flux functions defined on the fixed interval

[0, 1]. Giving Dirichlet boundary conditions, the final equilibrium problem is











−∆∗ψ = λ[
r

R0

A(ψ̄) +
R0

r
B(ψ̄)]χΩp

in Ω

ψ = h on ∂Ω

(8)

where χΩp
is the characteristic function of Ωp and R0 is the major radius of the Tokamak. The

parameter λ is a normalization factor that satisfies

Ip = λ

∫

Ωp

[
r

R0

A(ψ̄) +
R0

r
B(ψ̄)]dΩ. (9)

3.1. Iterative algorithm

The aim of the method is to reconstruct the plasma current density and the equilibrium solution
in real time. At each time step determined by the availability of new measurements, the
method consists in constructing a sequence (ψn,Ωn

p , A
n, Bn) converging to the solution vector

(ψ,Ωp, A,B). The sequence is obtained by the following algorithm:

• Starting guess: ψ0, Ω0
p, A

0 and B0 known from the previous time step solution. Compute
λ satisfying (9).

• Step 1 - Optimisation step: computation of An+1(ψ̄n), Bn+1(ψ̄n) using a least square
procedure.

• Step 2 - Direct problem step: computation of ψn+1 and Ωn+1
p solution of











−∆∗ψn+1 = λ[
r

R0

An+1(ψ̄n) +
R0

r
Bn+1(ψ̄n)]χΩn

p
in Ω

ψn+1 = h on ∂Ω.

(10)

• Step 3: If the process has not converged, n := n + 1 and return to Step 1 else
(ψ,A,B) = (ψn, An, Bn). The process is supposed to have converged when the relative

residu
||ψn+1 − ψn||

||ψn||
is small enough.

At each iteration of the algorithm, an inverse problem corresponding to the optimization step
and an approximated direct Grad-Shafranov problem corresponding to (10) have to be solved
successively. In (10), ψn is supposed known, the right hand side does not depend on ψn+1 and



thus problem (10) is linear.
Step 1 consists in a least-square minimization formulation







Find A∗, B∗, n∗e such that :

J(A∗, B∗, n∗e) = inf J(A,B, ne).
(11)

When polarimetric and interferometric measurements are used, the electronic density has also to
be identified even if ne, depending on ψ̄, does not appear in (8). The cost function J is defined
by

J(A,B, ne) = J0 +K1J1 +K2J2 + Jǫ (12)

where

J0 =
∑

i

(
1

r

∂ψ

∂n
(Ni) − gi)

2, J1 =
∑

i

(

∫

Ci

ne

r

∂ψ

∂n
dl − αi)

2, and J2 =
∑

i

(

∫

Ci

nedl − βi)
2,

and the coefficients K1 and K2 are weights giving more or less importance to measurements used
(see [5]). As a consequence of the ill-posedness of the identification of A, B and ne, a Tikhonov
regularization term Jǫ is introduced (see [7]) where

Jǫ = ǫ1

∫ 1

0

[A′′(x)]2dx+ ǫ2

∫ 1

0

[B′′(x)]2dx+ ǫ3

∫ 1

0

[n′′e(x)]
2dx

and ǫ1, ǫ2 and ǫ3 are regularization parameters.
In the next section, the numerical methods used to solve the two involved problems are detailed.

3.2. Numerical resolution

The resolution of the direct problem is based on a P 1 finite element method (see [8]). Consider
the family of triangulation τh of Ω, and Vh the finite dimensional subspace of H1(Ω) defined by

Vh = {vh ∈ H1(Ω), vh|T ∈ P 1(T ), ∀T ∈ τh}.

Introduce V 0
h = Vh ∩H1

0 (Ω), the discrete variational formulation of (10) reads















Find ψh ∈ Vh with ψh = h on ∂Ω such that

∀vh ∈ V 0
h ,

∫

Ω

1

µ0r
∇ψh · ∇vhdx =

∫

Ωp

λ[
r

R0

A(ψ̄∗) +
R0

r
B(ψ̄∗)]vhdx

(13)

where ψ∗ represents the value of ψ at the previous iteration. The Dirichlet boundary conditions
are imposed using the method consisting in computing the stiffness matrix of the Neumann
problem and modifying it. The modifications consist in replacing the rows corresponding to
each boundary node setting 1 on the diagonal terms and 0 elsewhere. The Dirichlet conditions
appear in the right hand side of the linear system. At each iteration, only the right hand side
of the system has to be modified. The sparse matrix K and its inverse K−1 are computed at
the beginning of the algorithm and stored until the end of the simulation.
The linear system of (13) can be written in the form

K.Ψ = y +H (14)

where K is the modified stiffness matrix, Ψ is the unknown vector, y is the right hand side of
the problem and H is the term corresponding to the Dirichlet conditions. The vector y depends



on A and B determinated in the optimization step.
The functions A, B and ne are decomposed on a basis (Φi)i=1,...,m of dimension m

A(x) =
m

∑

i

aiΦi(x), B(x) =
m

∑

i

biΦi(x) and ne(x) =
m

∑

i

ciΦi(x).

The vector y reads
y = Y (ψ̄∗)u (15)

where u = (a1, ..., am, b1, ..., bm) ∈ R2m. The term Y is a matrix of size n × 2m where n is the
number of nodes. Consider (vi) a basis of Vh, each row i of Y is decomposed as

Yij(Ψ̄
∗) =















∫

Ωp

λ
r

R0

Φj(ψ̄∗)vidΩ if 1 ≤ j ≤ m
∫

Ωp

λ
R0

r
Φj−m(ψ̄∗)vidΩ if m+ 1 ≤ j ≤ 2m.

During the optimisation step, ne is first estimated from interferometric measurements and A

and B are computed in a second time. The function ne(ψ̄) is approximated using a least square
formulation for the minimun of J2 with Tikhonov regularization, and solving the associated
normal equation.
To approximate A and B, suppose ne is known and consider the discrete approximated inverse
problem







Find u minimizing :

J(u) =
1

2
‖C(ψ∗, ne)Ψ − k‖2

D +
ε

2
uT Λu

(16)

where C(ψ∗, ne) is the observation operator corresponding to experimental measurements given
in Section 2 and k represents the experimental measurements. The first term in J is the discrete
version of J0 + K1J1. The second one corresponds to the first two terms of the Tikhonov
regularization term Jε. Denote by l the number of measurements available and by σ2

i the
variance of the error associated to the ith measurement, the norm ‖.‖D is defined by

∀x ∈ Rl ‖x‖2
D = (Dx,x) = (D1/2x,D1/2x)

where D is the diagonal matrix dii =
1

σ2
i

.

C is a matrix of size l× n and can be viewed as a vector composed of two blocks corresponding
respectively to J0 and J1.
The matrix Λ is of size 2m × 2m and is block diagonal composed of two blocks Λ1 and Λ2 of
size m×m, with

(Λ1)ij = (Λ2)ij =

∫ 1

0

Φ”i(x)Φ”j(x)dx

where the Φ”
i are the second derivatives of the basis functions Φi.

Using (14) and (15), the problem (16) becomes

J(u) =
1

2
‖C(ψ∗, ne)Ψ − k‖2

D +
ε

2
uT Λu

=
1

2
‖C(ψ∗, ne)K

−1Y (ψ̄∗)u+ (C(ψ∗, ne)K
−1H − k)‖2

D +
ε

2
uT Λu

=
1

2
‖Eu− F‖2

D +
ε

2
uT Λu

where E = C(ψ∗, ne)K
−1Y (ψ̄∗) and F = −C(ψ∗, ne)K

−1H + k. Setting Ẽ = D1/2E, problem
(16) reduces to solve the normal equation

(ẼT Ẽ + εΛ)u = ẼTF (17)



Table 1. Numerical convergence.

Iteration n
‖ψn+1 − ψn‖

‖ψn‖

‖An+1 −An‖

‖An‖

‖Bn+1 −Bn‖

‖Bn‖

1 0.0001477 0.0161846 0.0212656
2 1.77698e-05 0.0008774 0.0021739
3 6.74457e-06 0.0001095 0.0003792
4 4.71623e-06 1.1026e-05 7.0184e-05
5 3.45322e-06 1.70946e-05 2.07231e-05
6 2.53969e-06 1.27861e-05 1.25182e-05
7 1.86885e-06 8.90356e-06 9.60398e-06
8 1.37495e-06 6.29852e-06 7.40854e-06
9 1.01137e-06 4.54006e-06 5.59427e-06
10 7.43857e-07 3.30811e-06 4.1659e-06

4. Numerical results

The method detailed in this paper has been implemented in the software Equinox developed
in collaboration with the Fusion Department at Cadarache for Tore Supra (see [9, 10, 11]) and
JET (Join European Torus). Equinox can be used on the one hand for precise studies in which
the computing time is not a limiting factor and on the other hand in a real-time framework.

In table 1, the evolution of the relative residu on ψ, A and B versus the number of iterations
is given. It demonstrates numerically the convergence of the algorithm.

If a value ǫ = 10−6 is used as stop condition, the algorithm almost always needs about 5 to
30 iterations to converge. For the finite element mesh of 412 nodes and 762 elements used at
Tore Supra the average iteration cost (file access included) is of 0.038 s on a processor Intel(R)
Core(Tm)2 Duo T7100 1.80GHz. The expensive operations are the updates of matrices C and
Y and the computation of products CK−1 and CK−1Y (see Section 3.2). The resolution of the
direct problem (Eq. 14) is cheap since the matrix K−1 is stored once for all and does not change
from one iteration to the other. Morevover the resolution of the normal equation (Eq. 17) is also
cheap. Each function A and B is decomposed in a basis Φi (which can be chosen to be cubic
B-splines, piecewise linear functions or wavelet scaling functions) of about 5 to 10 functions
(depending on the user’s choice). This makes the dimension of the matrix to be inverted at
most 20 × 20.

For real-time applications the numerical reconstruction of an equilibrium must not take more
than 0.050 to 0.100 s. Therefore in this context it is not possible to let the algorithm fully
converge. A maximum number of iterations has to be set (typically 1 or 2 depending on the
computer and the size of the mesh). In practice this is not a real problem since our approach
is quasi-static. Two successive equilibriums during a pulse are very close and no important
differences have been observed between the results of the fully converged algorithm and its
real-time version.

Concerning Tikhonov regularization with a real-time constraint it is absolutely not possible
to compute the regularization parameter for each equilibrium. Therefore it is kept constant
during a pulse. The L-curve method [12] provided a value of approximately 5 × 10−5.

An example of the outputs of Equinox is presented in figure 3. It is a Tore Supra pulse in
which magnetic, interferometric and polarimetric measurements on 5 chords are used. One can
observe the position of the plasma in the vacuum vessel. Isoflux lines are displayed from the
magnetic axis to the boundary. For each active chord, the error between computed and measured



interferometry is given in purple. These errors are less than 1%. The polarimetry errors are given
in yellow. They are one order of magnitude larger than for interferometry. Different graphs are
plotted on the left of the display. On the first row the identified function A, and corresponding
functions p′ and p. On the second row the identified function B and corresponding function ff ′.
The third row gives the toroidal current density jφ in the equatorial plane and the fourth one
shows the safety factor. Finally on the fifth row the identified ne function is plotted.

Figure 3. Example of Equinox output. See text for details.
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