1,789,632 research outputs found

    Calculation of the persistence length of a flexible polymer chain with short range self-repulsion

    Full text link
    For a self-repelling polymer chain consisting of n segments we calculate the persistence length L(j,n), defined as the projection of the end-to-end vector on the direction of the j`th segment. This quantity shows some pronounced variation along the chain. Using the renormalization group and epsilon-expansion we establish the scaling form and calculate the scaling function to order epsilon^2. Asymptotically the simple result L(j,n) ~ const(j(n-j)/n)^(2nu-1) emerges for dimension d=3. Also outside the excluded volume limit L(j,n) is found to behave very similar to the swelling factor of a chain of length j(n-j)/n. We carry through simulations which are found to be in good accord with our analytical results. For d=2 both our and previous simulations as well as theoretical arguments suggest the existence of logarithmic anomalies.Comment: 28 pages, 8 figures, changed conten

    Probing lepton flavor violation signal via e+ e- (gamma gamma) ---> l(i) anti-l(j) in the littlest Higgs model with T-parity at the ILC

    Full text link
    In the littlest Higgs model with T-parity, the new interactions between the mirror leptons and the Standard Model leptons can induce some lepton flavor violation (LFV) processes at loop level. We study the possibility of the ILC to probe the LFV production processes e+e−(γγ)→lilˉje^+e^-(\gamma\gamma)\rightarrow l_{i}\bar{l}_{j}. Our results show that the rates of γγ→lilˉj\gamma\gamma\rightarrow l_{i}\bar{l}_{j} can reach 1 fb in optimal cases after reasonable kinematical cuts, which implies that these processes may be observed at the ILC

    Dirac oscillator with nonzero minimal uncertainty in position

    Full text link
    In the context of some deformed canonical commutation relations leading to isotropic nonzero minimal uncertainties in the position coordinates, a Dirac equation is exactly solved for the first time, namely that corresponding to the Dirac oscillator. Supersymmetric quantum mechanical and shape-invariance methods are used to derive both the energy spectrum and wavefunctions in the momentum representation. As for the conventional Dirac oscillator, there are neither negative-energy states for E=−1E=-1, nor symmetry between the l=j−1/2l = j - {1/2} and l=j+1/2l = j + {1/2} cases, both features being connected with supersymmetry or, equivalently, the ω→−ω\omega \to - \omega transformation. In contrast with the conventional case, however, the energy spectrum does not present any degeneracy pattern apart from that associated with the rotational symmetry. More unexpectedly, deformation leads to a difference in behaviour between the l=j−1/2l = j - {1/2} states corresponding to small, intermediate and very large jj values in the sense that only for the first ones supersymmetry remains unbroken, while for the second ones no bound state does exist.Comment: 28 pages, no figure, submitted to JP

    On the theory of energy distributions of products of molecular beam reactions involving transient complexes

    Get PDF
    Theoretical energy distributions of reaction products in molecular beam systems are described for reactions proceeding via transient complexes. Loose and tight transition states are considered for the exit channel. For a loose transition state and the case of l ≫ j, the result is the same as of Safron et al. For the case of a tight transition state exit channel effects are included analogous to steric effects for the reverse reaction. It is shown how, via one mechanism, bending vibrational energy of that transition state can contribute to the translational energy of the reaction products. Expressions are derived for the energy distributions of the products when l ≫ j and j ≫ l

    Parity doubling of highly excited mesons

    Full text link
    Glozman has proposed that highly excited mesons and baryons fall into parity doublets, and that the f4(2050) on the leading Regge trajectory should have a nearly degenerate J^{PC} = 4^{-+} partner. A re-analysis of Crystal Barrel data does not support this idea. A likely explanation is that centrifugal barriers on the leading trajectory allow formation of the L=J-1 states, but are too strong to allow L=J states. Two new polarisation experiments have the potential for major progress in meson spectroscopy.Comment: 7 pages, 2 figures, 1 table. Further experimental detail added and additional algebra. Conclusions unchanged. To be published in Physics Letters

    Is there a third order phase transition for supercritical fluids?

    Get PDF
    We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.Comment: 13 pages, 6 figure

    Distance-two labelings of digraphs

    Full text link
    For positive integers j≥kj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that ∣f(x)−f(y)∣≥j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and ∣f(x)−f(y)∣≥k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λ⃗j,k\vec{\lambda}_{j,k}-number λ⃗j,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λ⃗j,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λ⃗j,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λ⃗j,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    Linear Collisionless Landau Damping in Hilbert Space

    Full text link
    The equivalence between the Laplace transform [Landau L., J. Phys. USSR, 10 (1946), 25] and Hermite transform [Zocco and Schekochihin, Phys. Plasmas, 18, 102309 (2011)] solutions of the linear collisionless Landau damping problem is proven
    • …
    corecore