research

Distance-two labelings of digraphs

Abstract

For positive integers j≥kj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that ∣f(x)−f(y)∣≥j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and ∣f(x)−f(y)∣≥k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λ⃗j,k\vec{\lambda}_{j,k}-number λ⃗j,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λ⃗j,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λ⃗j,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λ⃗j,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    Similar works

    Full text

    thumbnail-image

    Available Versions