7,239 research outputs found

    The city as one thing

    Get PDF
    This paper summarises the latest theories in the field of space syntax. It opens with a discussion of the relationship between the form of urban grids and the process of how cities are formed by human activity; this is done by a comprehensive review of space syntax theory from its starting point in the1970s. The paper goes on to present research into how cities balance the micro-economic factors which shape the spatial structure of cities with the cultural factors that shape the underlying form of residential areas. It goes on to discuss the relationship between activity and space and how this relationship is formed by the way different activities make different demands on movement and co-presence. The paper ends with a discussion regarding the manner in which patterns of spatial integration influence the location of different classes and social groups in the city and contribute to the pathology of housing estates. The paper concludes that spatial form needs to be understood as a contributing factor in forming the patterns of integration and segregation in cities

    Radio-Optical Galaxy Shape and Shear Correlations in the COSMOS Field using 3 GHz VLA Observations

    Full text link
    We present a weak lensing analysis of the 3 GHz VLA radio survey of the COSMOS field, which we correlate with overlapping HST-ACS optical observations using both intrinsic galaxy shape and cosmic shear correlation statistics. After cross-matching sources between the two catalogues, we measure the correlations of galaxy position angles and find a Pearson correlation coefficient of 0.14±0.030.14 \pm 0.03. This is a marked improvement from previous studies which found very weak, or non-existent correlations, and gives insight into the emission processes of radio and optical galaxies. We also extract power spectra of averaged galaxy ellipticities (the primary observable for cosmic shear) from the two catalogues, and produce optical-optical, radio-optical and radio-radio spectra. The optical-optical auto-power spectrum was measured to a detection significance of 9.80σ\sigma and is consistent with previous observations of the same field. For radio spectra (which we do not calibrate, given the unknown nature of their systematics), although we do not detect significant radio-optical (1.50σ\sigma) or radio-radio (1.45σ\sigma) EE-mode power spectra, we do find the EE-mode spectra to be more consistent with the shear signal expected from previous studies than with a null signal, and vice versa for BB-mode and EBEB cross-correlation spectra. Our results give promise that future radio weak lensing surveys with larger source number densities over larger areas will have the capability to measure significant weak lensing signals.Comment: 19 pages, 17 figures, accepted for publication in MNRA

    Quantitative spectroscopic analysis of and distance to SN1999em

    Full text link
    This work presents a detailed quantitative spectroscopic analysis of, and the determination of the distance to, the type II supernovae (SN) SN1999em with CMFGEN (Dessart & Hillier 2005a), based on spectrophotometric observations at eight dates up to 40 days after discovery. We use the same iron-group metal content for the ejecta, the same power-law density distribution (with exponent n~10), and a Hubble-velocity law at all times. We adopt a H/He/C/N/O abundance pattern compatible with CNO-cycle equilibrium values for a RSG/BSG progenitor, with C/O enhanced and N depleted at later times. Based on our synthetic fits to spectrophotometric observations of SN1999em, we obtain a distance of 11.5Mpc, similar to that of Baron et al. (2004) and the Cepheid distance to the galaxy host of 11.7Mpc (Leonard et al. 2003). Similarly, based on such models, the Expanding Photosphere Method (EPM) delivers a distance of 11.6Mpc, with negligible scatter between photometric bandpass sets; there is thus nothing wrong with the EPM as such. Previous determinations using the tabulated correction factors of Eastman et al. (1996) all led to 30-50% underestimates: we find that this is caused by 1) an underestimate of the correction factors compared to the only other study of the kind by Dessart & Hillier (2005b), 2) a neglect of the intrinsic >20% scatter of correction factors, and 3) the use of the EPM at late times when severe line blanketing makes the method inaccurate. The need of detailed model computations for reliable EPM distance estimates thus defeats the appeal and simplicity of the method. However, detailed fits to SN optical spectra, based on tailored models for individual SN observations, offers a promising approach to obtaining distances with 10-20% accuracy, either through the EPM or a la Baron et al. (2004).Comment: 20 pages, 13 figures, accepted for publication in A&

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    2D non-LTE Modeling for Axi-symmetric Winds. II. A Short Characteristic Solution for Radiative Transfer in Rotating Winds

    Full text link
    We present a new radiative transfer code for axi-symmetric stellar atmospheres and compare test results against 1D and 2D models with and without velocity fields. The code uses the short characteristic method with modifications to handle axi-symmetric and non-monotonic 3D wind velocities, and allows for distributed calculations. The formal solution along a characteristic is evaluated with a resolution that is proportional to the velocity gradient along the characteristic. This allows us to accurately map the variation of the opacities and emissivities as a function of frequency and spatial coordinates, but avoids unnecessary work in low velocity regions. We represent a characteristic with an impact-parameter vector p (a vector that is normal to the plane containing the characteristic and the origin) rather than the traditional unit vector in the direction of the ray. The code calculates the incoming intensities for the characteristics by a single latitudinal interpolation without any further interpolation in the radiation angles. Using this representation also provides a venue for distributed calculations since the radiative transfer can be done independently for each p.Comment: 18 pages, 12 figures, accepted for publication in A&

    Mass fluxes for O stars

    Get PDF
    The theory of moving reversing layers for hot stars is updated to include an extensive line list, a radiative boundary condition from static model atmospheres, line transfer by scattering, and continuation to supersonic velocities. A Monte Carlo technique determines the theory's eigenvalue J, the mass flux, and the derived J's are in good agreement with the wind models of Pauldrach et al. (2001). The solutions' sensitivity to the photospheric microturbulent velocity reveals that this parameter has a throttling effect on J: turbulent line-broadening in the quasi-static layers reduces the radiation force available to accelerate matter through the sonic point. If photospheric turbulence approaches sonic velocities, this mechanism reduces mass loss rates by factors > 3, which would partly account for the reduced rates found observationally for clumpy winds.Comment: Accepted by A&A; 9 pages, 4 figure

    Detection of a Hot Binary Companion of η\eta Carinae

    Full text link
    We report the detection of a hot companion of η\eta Carinae using high resolution spectra (905 - 1180 \AA) obtained with the Far Ultraviolet Spectroscopic Explorer (\fuse) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from \etacar shortward of \lya disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, \etaB, was also eclipsed by the dense wind or extended atmosphere of \etaA. Analysis of the far-UV spectrum shows that \etaB is a luminous hot star. The \nii \wll1084-1086 emission feature suggests that it may be nitrogen-rich. The observed far-UV flux levels and spectral features, combined with the timing of their disappearance, is consistent with \etacar\ being a massive binary system

    O-star mass-loss rates at low metallicity

    Full text link
    Mass fluxes J are computed for the extragalactic O stars investigated by Tramper et al. (2011; TSKK). For one early-type O star, computed and observed rates agree within errors. However, for two late-type O stars, theoretical mass-loss rates underpredict observed rates by ~ 1.6 dex, far exceeding observational errors. A likely cause of the discrepancy is overestimated observed rates due to the neglect of wind-clumping. A less likely but intriguing possibility is that, in observing O stars with Z/Z_sun ~ 1/7, TSKK have serendipitously discovered an additional mass-loss mechanism not evident in the spectra of Galactic O stars with powerful radiation-driven winds. Constraints on this unknown mechanism are discussed. In establishing that the discrepancies, if real, are inescapable for purely radiation-driven winds, failed searches for high-J solutions are reported and the importance of a numerical technique that cannot spuriously create or destroy momentum stressed. The Z-dependences of the computed rates for Z/Z_sun in the interval (1/30, 2) show significant departures from a single power law, and these are attributed to curve-of-growth effects in the differentially-expanding reversing layers. The best-fitting power-law exponents range from 0.68-0.97.Comment: 6 pages, 2 figure

    Augmented reality meeting table: a novel multi-user interface for architectural design

    Get PDF
    Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559)
    • 

    corecore