161 research outputs found

    Efficient Certified Resolution Proof Checking

    Get PDF
    We present a novel propositional proof tracing format that eliminates complex processing, thus enabling efficient (formal) proof checking. The benefits of this format are demonstrated by implementing a proof checker in C, which outperforms a state-of-the-art checker by two orders of magnitude. We then formalize the theory underlying propositional proof checking in Coq, and extract a correct-by-construction proof checker for our format from the formalization. An empirical evaluation using 280 unsatisfiable instances from the 2015 and 2016 SAT competitions shows that this certified checker usually performs comparably to a state-of-the-art non-certified proof checker. Using this format, we formally verify the recent 200 TB proof of the Boolean Pythagorean Triples conjecture

    Efficient Certified RAT Verification

    Get PDF
    Clausal proofs have become a popular approach to validate the results of SAT solvers. However, validating clausal proofs in the most widely supported format (DRAT) is expensive even in highly optimized implementations. We present a new format, called LRAT, which extends the DRAT format with hints that facilitate a simple and fast validation algorithm. Checking validity of LRAT proofs can be implemented using trusted systems such as the languages supported by theorem provers. We demonstrate this by implementing two certified LRAT checkers, one in Coq and one in ACL2

    Entanglement dynamics of two qubits under the influence of external kicks and Gaussian pulses

    Full text link
    We have investigated the dynamics of entanglement between two spin-1/2 qubits that are subject to independent kick and Gaussian pulse type external magnetic fields analytically as well as numerically. Dyson time ordering effect on the dynamics is found to be important for the sequence of kicks. We show that "almost-steady" high entanglement can be created between two initially unentangled qubits by using carefully designed kick or pulse sequences

    Evaluating QBF Solvers: Quantifier Alternations Matter

    Full text link
    We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer, including appendi

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    Encoding Redundancy for Satisfaction-Driven Clause Learning

    Get PDF
    Satisfaction-Driven Clause Learning (SDCL) is a recent SAT solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems

    Derivation reduction of metarules in meta-interpretive learning

    Get PDF
    Meta-interpretive learning (MIL) is a form of inductive logic programming. MIL uses second-order Horn clauses, called metarules, as a form of declarative bias. Metarules define the structures of learnable programs and thus the hypothesis space. Deciding which metarules to use is a trade-off between efficiency and expressivity. The hypothesis space increases given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. A recent paper used Progol’s entailment reduction algorithm to identify irreducible, or minimal, sets of metarules. In some cases, as few as two metarules were shown to be sufficient to entail all hypotheses in an infinite language. Moreover, it was shown that compared to non-minimal sets, learning with minimal sets of metarules improves predictive accuracies and lowers learning times. In this paper, we show that entailment reduction can be too strong and can remove metarules necessary to make a hypothesis more specific. We describe a new reduction technique based on derivations. Specifically, we introduce the derivation reduction problem, the problem of finding a finite subset of a Horn theory from which the whole theory can be derived using SLD-resolution. We describe a derivation reduction algorithm which we use to reduce sets of metarules. We also theoretically study whether certain sets of metarules can be derivationally reduced to minimal finite subsets. Our experiments compare learning with entailment and derivation reduced sets of metarules. In general, using derivation reduced sets of metarules outperforms using entailment reduced sets of metarules, both in terms of predictive accuracies and learning times

    A Study of the Learnability of Relational Properties: Model Counting Meets Machine Learning (MCML)

    Full text link
    This paper introduces the MCML approach for empirically studying the learnability of relational properties that can be expressed in the well-known software design language Alloy. A key novelty of MCML is quantification of the performance of and semantic differences among trained machine learning (ML) models, specifically decision trees, with respect to entire (bounded) input spaces, and not just for given training and test datasets (as is the common practice). MCML reduces the quantification problems to the classic complexity theory problem of model counting, and employs state-of-the-art model counters. The results show that relatively simple ML models can achieve surprisingly high performance (accuracy and F1-score) when evaluated in the common setting of using training and test datasets - even when the training dataset is much smaller than the test dataset - indicating the seeming simplicity of learning relational properties. However, MCML metrics based on model counting show that the performance can degrade substantially when tested against the entire (bounded) input space, indicating the high complexity of precisely learning these properties, and the usefulness of model counting in quantifying the true performance
    corecore