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Abstract. Satisfaction-Driven Clause Learning (SDCL) is a recent SAT
solving paradigm that aggressively trims the search space of possible
truth assignments. To determine if the SAT solver is currently exploring
a dispensable part of the search space, SDCL uses the so-called positive
reduct of a formula: The positive reduct is an easily solvable propositional
formula that is satisfiable if the current assignment of the solver can be
safely pruned from the search space. In this paper, we present two novel
variants of the positive reduct that allow for even more aggressive prun-
ing. Using one of these variants allows SDCL to solve harder problems,
in particular the well-known Tseitin formulas and mutilated chessboard
problems. For the first time, we are able to generate and automatically
check clausal proofs for large instances of these problems.

Introduction

Conflict-driven clause learning (CDCL) [26, 28] is the most successful paradigm
for solving satisfiability (SAT) problems and therefore CDCL solvers are per-
vasively used as reasoning engines to construct and verify systems. However,
CDCL solvers still struggle to handle some important applications within rea-
sonable time. These applications include the verification of arithmetic circuits,
challenges from cryptanalysis, and hard combinatorial problems. There appears
to be a theoretical barrier to dealing with some of these applications efficiently.

At its core, CDCL is based on the resolution proof system, which means
that the same limitations that apply to resolution also apply to CDCL. Most
importantly, there exist only exponentially large resolution proofs for several
seemingly easy problems [15, 33], implying that CDCL solvers require exponen-
tial time to solve them. A recent approach to breaking this exponential barrier is
the satisfaction-driven clause learning (SDCL) paradigm [20], which can auto-
matically find short proofs of pigeon-hole formulas in the PR proof system [19].

SDCL extends CDCL by pruning the search space of truth assignments more
aggressively. While a pure CDCL solver learns only clauses that can be efficiently
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derived via resolution, an SDCL solver also learns stronger clauses. The initial
approach to learning these clauses is based on the so-called positive reduct : Given
a formula and a partial truth assignment, the positive reduct is a simple propo-
sitional formula encoding the question of whether the assignment can be pruned
safely from the search space. In cases where the positive reduct is satisfiable, the
solver performs the pruning by learning a clause that blocks the assignment.

Although the original SDCL paradigm can solve the hard pigeon-hole for-
mulas, we observe that it is not sophisticated enough to deal with other hard
formulas that require exponential-size resolution proofs, such as Tseitin formulas
over expander graphs [32, 33] or mutilated chessboard problems [1, 13, 27]. In this
paper, we deal with this issue and present techniques that improve the SDCL
paradigm. In particular, we introduce new variants of the above-mentioned pos-
itive reduct that allow SDCL to prune the search space even more aggressively.

In a first step, we explicitly formalize the notion of a pruning predicate:
For a formula F and a (partial) assignment α, a pruning predicate is a proposi-
tional formula that is satisfiable if α can be pruned in a satisfiability-preserving
way. Ideally, a pruning predicate is easily solvable while still pruning the search
space as much as possible. We then present two novel pruning predicates of
which one, the filtered positive reduct, is easier to solve and arguably more useful
in practice while the other, the PR reduct, allows for stronger pruning.

In many applications, it is not enough that a solver just provides a simple
yes/no answer. Especially when dealing with mathematical problems or safety-
critical systems, solvers are required to provide automatically checkable proofs
that certify the correctness of their answers. The current state of the art in proof
generation and proof checking is to focus on clausal proofs, which are specific
sequences of clause additions and clause removals. Besides the requirement that
SAT solvers in the main track of the SAT competition must produce such clausal
proofs, there also exist corresponding proof checkers whose correctness has been
verified by theorem provers, as first proposed in a seminal TACAS’17 paper [12].

We implemented a new SDCL solver, called SaDiCaL, that can solve the
pigeon-hole formulas, the Tseitin formulas, and the mutilated chessboard prob-
lems due to using the filtered positive reduct. Our solver also produces PR
proofs [19]. We certify their correctness by translating them via DRAT proofs [17]
to LRAT proofs, which are then validated by a formally verified proof checker [18].

Existing approaches to solving the Tseitin formulas are based on symmetry
breaking [14] or algebraic reasoning, in particular Gaussian elimination [9, 31,
3, 21]. However, the respective tools do not output machine-checkable proofs.
Moreover, approaches based on symmetry breaking and Gaussian elimination
depend strongly on the syntactic structure of formulas to identify symmetries and
cardinality constraints, respectively. They are therefore vulnerable to syntactic
changes that do not affect the semantics of a formula. In contrast, SDCL reasons
on the semantic level, making it less prone to syntactic changes.

The main contributions of this paper are as follows: (1) We explicitly for-
mulate the notion of a pruning predicate, which was used only implicitly in the
original formulation of SDCL. (2) We present two novel pruning predicates that
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generalize the positive reduct. (3) We implemented a new SDCL solver, called
SaDiCaL, that uses one of our new pruning predicates. (4) We show by an
experimental evaluation that this new pruning predicate enables SaDiCaL to
produce short proofs (without new variables) of Tseitin formulas and of muti-
lated chessboard problems.

Preliminaries

Propositional logic. We consider propositional formulas in conjunctive normal
form (CNF), which are defined as follows. A literal is defined to be either a
variable x (a positive literal) or the negation x of a variable x (a negative literal).
The complement l of a literal l is defined as l = x if l = x and l = x if l = x.
Accordingly, for a set L of literals, we define L = {l | l ∈ L}. A clause is a
disjunction of literals. A formula is a conjunction of clauses. We view clauses
as sets of literals and formulas as sets of clauses. For a set L of literals and a
formula F , we define FL = {C ∈ F | C ∩ L 6= ∅}. By var(F ) we denote the
variables of a literal, clause, or formula F . For convenience, we treat var(F ) as
a variable if F is a literal, and as a set of variables otherwise.

Satisfiability. An assignment is a function from a set of variables to the truth
values 1 (true) and 0 (false). An assignment is total w.r.t. a formula F if it assigns
a truth value to all variables var(F ) occurring in F ; otherwise it is partial. A
literal l is satisfied by an assignment α if l is positive and α(var(l)) = 1 or
if it is negative and α(var(l)) = 0. A literal is falsified by an assignment α
if its complement is satisfied by α. A clause is satisfied by an assignment α if
it contains a literal that is satisfied by α. Finally, a formula is satisfied by an
assignment α if all its clauses are satisfied by α. A formula is satisfiable if there
exists an assignment that satisfies it. We often denote assignments by sequences
of the literals they satisfy. For instance, x y denotes the assignment that assigns
1 to x and 0 to y. For an assignment α, var(α) denotes the variables assigned
by α. For a set L of non-contradictory literals, we denote by αL the assignment
obtained from α by making all literals in L true and assigning the same value
as α to other variables not in var(L).

Formula simplification. We refer to the empty clause by ⊥. Given an assignment
α and a clause C, we define C�α = > if α satisfies C; otherwise, C�α denotes
the result of removing from C all the literals falsified by α. For a formula F ,
we define F �α = {C�α | C ∈ F and C�α 6= >}. We say that an assignment α
touches a clause C if var(α)∩var(C) 6= ∅. A unit clause is a clause with only one
literal. The result of applying the unit clause rule to a formula F is the formula
F �l where (l) is a unit clause in F . The iterated application of the unit clause
rule to a formula F , until no unit clauses are left, is called unit propagation.
If unit propagation yields the empty clause ⊥, we say that unit propagation
applied to F derived a conflict.
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SDCL ( formula F )
1 α := ∅
2 forever do
3 α := UnitPropagate (F, α)
4 if α falsifies a clause in F then
5 C := AnalyzeConflict()
6 F := F ∧ C
7 if C is the empty clause ⊥ then return UNSAT
8 α := BackJump(C,α)
9 else if the pruning predicate Pα(F ) is satisfiable then

10 C := AnalyzeWitness()
11 F := F ∧ C
12 α := BackJump(C,α)
13 else
14 if all variables are assigned then return SAT
15 l := Decide ()
16 α := α ∪ {l}

Fig. 1. SDCL algorithm [20]. The lines 9 to 12 extend CDCL [26].

Formula relations. Two formulas are logically equivalent if they are satisfied by
the same total assignments. Two formulas are equisatisfiable if they are either
both satisfiable or both unsatisfiable. Furthermore, by F 1̀ G we denote that for
every clause (l1 ∨ · · · ∨ ln) ∈ G, unit propagation applied to F ∧ (l1) ∧ · · · ∧ (ln)
derives a conflict. If F 1̀ G, we say that F implies G via unit propagation. For
example, (a∨c)∧(b∨c) implies (a∨b) via unit propagation since unit propagation
derives a conflict on (a ∨ c) ∧ (b ∨ c) ∧ (a) ∧ (b).

Conflict-Driven Clause Learning (CDCL). To determine whether a formula is
satisfiable a CDCL solver iteratively performs the following operations (obtained
from the pseudo code in Fig. 1 by removing the lines 9 to 12): First, the solver
performs unit propagation until either it derives a conflict or the formula con-
tains no more unit clauses. If it derives a conflict, it analyzes the conflict to
learn a clause that prevents it from repeating similar (bad) decisions in the
future (“clause learning”). If this learned clause is the (unsatisfiable) empty
clause ⊥, the solver can conclude that the formula is unsatisfiable. In case it
is not the empty clause, the solver revokes some of its variable assignments
(“backjumping”) and then repeats the whole procedure again by performing
unit propagation. If, however, the solver does not derive a conflict, there are two
options: Either all variables are assigned, in which case the solver can conclude
that the formula is satisfiable, or there are still unassigned variables, in which
case the solver first assigns a truth value to an unassigned variable (the actual
variable and the truth value are chosen based on a so-called decision heuristic)
and then continues by again performing unit propagation. For more details see
the chapter on CDCL [25] in the Handbook of Satisfiability [7].
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Fig. 2. By learning the clause x∨ y, a solver prunes all branches where x is true and y
is false from the search space. SDCL can prune satisfying branches too (unlike CDCL).

Satisfaction-Driven Clause Learning (SDCL). The SDCL algorithm [20], shown
in Fig. 1, is a generalization of CDCL that is obtained by adding lines 9 to
12 to the CDCL algorithm. In CDCL, if unit propagation does not derive a
conflict, the solver picks a variable and assigns a truth value to it. In contrast,
an SDCL solver does not necessarily assign a new variable in this situation.
Instead, it first checks if the current assignment can be pruned from the search
space without affecting satisfiability. If so, the solver prunes the assignment by
learning a new clause (Fig. 2 illustrates how clause learning can prune the search
space). This clause is returned by the AnalyzeWitness() function and usually
consists of the decision literals of the current assignment (although other ways of
computing the clause are possible, c.f. [20]). If the assignment cannot be pruned,
the solver proceeds by assigning a new variable—just as in CDCL. To check if the
current assignment can be pruned, the solver produces a propositional formula
that should be easier to solve than the original formula and that can only be
satisfiable if the assignment can be pruned. Thus, an SDCL solver solves several
easier formulas in order to solve a hard formula. In this paper, we call these easier
formulas pruning predicates. We first formalize the pruning predicate used in the
original SDCL paper before we introduce more powerful pruning predicates.

Pruning Predicates and Redundant Clauses

As already explained informally, a pruning predicate is a propositional formula
whose satisfiability guarantees that an assignment can be pruned from the search
space. The actual pruning is then performed by adding the clause that blocks
the assignment (or a subclause of this clause, as explained in detail later):

Definition 1. Given an assignment α = a1 . . . ak, the clause (a1 ∨ · · · ∨ ak) is
the clause that blocks α.

The clause that blocks α is thus the unique maximal clause falsified by α. Based
on this notion, we define pruning predicates as follows:

Definition 2. Let F be a formula and C the clause that blocks a given (partial)
assignment α. A pruning predicate for F and α is a formula Pα(F ) such that
the following holds: if Pα(F ) is satisfiable, then F and F ∧C are equisatisfiable.

Thus, if a pruning predicate for a formula F and an assignment α is satisfiable,
we can add the clause that blocks α to F without affecting satisfiability. We thus
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Fig. 3. Relationship between types of redundant clauses and the corresponding pruning
predicates. An arrow from X to Y means that X is a superset of Y .

say that this clause is redundant with respect to F . In the paper that introduces
SDCL [20], the so-called positive reduct (see Definition 3 below) is used as a
pruning predicate. The positive reduct is obtained from satisfied clauses of the
original formula by removing unassigned literals.

In the following, given a clause C and an assignment α, we write touchedα(C)
to denote the subclause of C that contains exactly the literals assigned by α.
Analogously, we denote by untouchedα(C) the subclause of C that contains the
literals not assigned by α [20].

Definition 3. Let F be a formula and α an assignment. Then, the positive
reduct pα(F ) of F and α is the formula G∧C where C is the clause that blocks
α and G = {touchedα(D) | D ∈ F and D�α = >}.

Example 1. Let F = (x ∨ y ∨ z) ∧ (w ∨ y) ∧ (w ∨ z) and α = x y z. Then, the
positive reduct pα(F ) of F w.r.t. α is the formula (x∨ y ∨ z)∧ (z)∧ (x∨ y ∨ z).

The positive reduct is satisfiable if and only if the clause blocked by α is a
set-blocked clause [23], short SET clause, with respect to F . Since the addition
of set-blocked clauses to a formula preserves satisfiability, it follows that the
positive reduct is a pruning predicate. Moreover, since the problem of deciding
whether a given clause is a set-blocked clause is NP-complete, it is natural to
use a SAT solver for finding set-blocked clauses.

Although set-blocked clauses can be found efficiently with the positive reduct,
there are more general kinds of clauses whose addition can prune the search space
more aggressively, namely propagation-redundant clauses (PR clauses) and their
subclass of set-propagation-redundant clauses (SPR clauses) [19].

In the following, we thus introduce two different kinds of pruning predicates.
Given a formula F and an assignment α, the first pruning predicate, called the
filtered positive reduct, is satisfiable if and only if the clause that blocks α is an
SPR clause in F . The second pruning predicate, called PR reduct, is satisfiable
if and only if the clause that blocks α is a PR clause; it allows us to prune more
assignments than the filtered positive reduct but it is also harder to solve. The
relationship between the redundant clause types and pruning predicates is shown
in Fig. 3. According to [19], the definition of PR clauses is as follows:

Definition 4. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) with respect to F if there exists
an assignment ω such that F �α 1̀ F �ω and ω satisfies C.
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The clause C can be seen as a constraint that prunes all assignments that extend
α from the search space. Since F �α implies F �ω via unit propagation, every
assignment that satisfies F �α also satisfies F �ω, and so we say that F is at least
as satisfiable under ω as it is under α. Moreover, since ω satisfies C, it must
disagree with α. Consider the following example [19]:

Example 2. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) be a formula, C = (x) a clause,
and ω = x z an assignment. Then, α = x is the assignment blocked by C. Now,
consider F �α = (y) and F �ω = (y). Since unit propagation clearly derives a
conflict on F �α∧ (y) = (y)∧ (y), we have F �α 1̀ F �ω and thus C is propagation
redundant with respect to F .

The key property of propagation-redundant clauses is that their addition to a
formula preserves satisfiability [19]. A strict subclass of propagation-redundant
clauses are set-propagation-redundant clauses, which have the additional require-
ment that ω must assign the same variables as α. For the following definition,
recall (from the preliminaries) that αL denotes the assignment obtained from α
by assigning 1 to the literals in L [19]:

Definition 5. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-propagation redundant (SPR) with respect to F if it con-
tains a non-empty set L of literals such that F �α 1̀ F �αL.

If F �α 1̀ F �αL, we say C is SPR by L with respect to F .

Example 3. Let F = (x∨ y)∧ (x∨ y ∨ z)∧ (x∨ z)∧ (x∨ u)∧ (u∨ x), C = x∨ u,
and L = {x, u}. Then, α = x u is the assignment blocked by C, and αL = x u.
Now, consider F �α = (y) ∧ (y ∨ z) and F �αL = (z). Clearly, F �α 1̀ F �αL and
so C is set-propagation redundant by L with respect to F .

Most known types of redundant clauses are SPR clauses [19]. This includes
blocked clauses [24], set-blocked clauses [23], resolution asymmetric tautologies
(RATs) [22], and many more. By introducing pruning predicates that allow us
to add SPR clauses and even PR clauses to a formula, we thus allow for more
effective pruning than with the positive reduct originally used in SDCL. We start
by presenting our new filtered positive reduct.

The Filtered Positive Reduct

The original positive reduct of a formula F and an assignment α is obtained by
first taking all clauses of F that are satisfied by α and then removing from these
clauses the literals that are not touched (assigned) by α. The resulting clauses are
then conjoined with the clause C that blocks α. We obtain the filtered positive
reduct by not taking all satisfied clauses of F but only those for which the
untouched part is not implied by F �α via unit propagation:

Definition 6. Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F ) of F and α is the formula G ∧ C where C is the clause
that blocks α and G = {touchedα(D) | D ∈ F and F �α 6 1̀ untouchedα(D)}.
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Clearly the filtered positive reduct is a subset of the positive reduct because
F �α 6 1̀ untouchedα(D) implies D�α = >. To see this, suppose D�α 6= >.
Then, D�α is contained in F �α and since untouchedα(D) = D�α, it follows that
F �α 1̀ untouchedα(D). Therefore, the filtered positive reduct is obtained from
the positive reduct by removing (“filtering”) every clause D′ = touchedα(D)
such that F �α 1̀ untouchedα(D).

The following example illustrates how the filtered positive reduct allows us to
prune assignments that cannot be pruned when using only the positive reduct:

Example 4. Let F = (x ∨ y) ∧ (x ∨ y) and consider the assignment α = x. The
positive reduct pα(F ) = (x) ∧ (x) is unsatisfiable and so it does not allow us
to prune α. In contrast, the filtered positive reduct fα(F ) = (x), obtained by
filtering out the clause (x), is satisfied by the assignment x. The clause (x) is not
contained in the filtered reduct because untouchedα(x∨y) = (y) and F �α = (y),
which implies F �α 1̀ untouchedα(x ∨ y). Note that the clause (x) is contained
both in the positive reduct and in the filtered positive reduct since it blocks α.

The filtered positive reduct has a useful property: If a non-empty assignment
α falsifies a formula F , then the filtered positive reduct fα(F ) is satisfiable. To
see this, observe that ⊥ ∈ F �α and so F �α 1̀ untouchedα(D) for every clause
D ∈ F because unit propagation derives a conflict on F �α alone (note that this
also holds if untouchedα(D) is the empty clause ⊥). Therefore, fα(F ) contains
only the clause that blocks α, which is clearly satisfiable. The ordinary positive
reduct does not have this property.

Note that the filtered positive reduct contains only variables of var(α). Since
it also contains the clause that blocks α, any satisfying assignment of the filtered
positive reduct must disagree with α on at least one literal. Hence, every satisfy-
ing assignment of the filtered positive reduct is of the form αL where L is a set of
literals that are contained in the clause that blocks α. With the filtered positive
reduct, we can identify exactly the clauses that are set-propagation redundant
with respect to a formula:

Theorem 1. Let F be a formula, α an assignment, and C the clause that
blocks α. Then, C is SPR by an L ⊆ C with respect to F if and only if the
assignment αL satisfies the filtered positive reduct fα(F ).

Proof. For the “only if” direction, suppose C is SPR by an L ⊆ C in F , meaning
that F �α 1̀ F �αL. We show that αL satisfies all clauses of fα(F ). Let therefore
D′ ∈ fα(F ). By definition, D′ is either the clause that blocks α or it is of the
form touchedα(D) for some clause D ∈ F such that F �α 6 1̀ untouchedα(D). In
the former case, D′ is clearly satisfied by αL since αL must disagree with α.
In the latter case, since F �α 1̀ F �αL, it follows that either F �α 1̀ D�αL or
αL satisfies D. Now, if D�αL 6= >, it cannot be the case that F �α 1̀ D�αL
since var(αL) = var(α) and thus D�αL = untouchedα(D), which would imply
F �α 1̀ untouchedα(D). Therefore, αL must satisfy D. But then αL must satisfy
D′ = touchedα(D), again since var(αL) = var(α).
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For the “if” direction, assume that αL satisfies the filtered positive reduct
fα(F ). We show that F �α 1̀ F �αL. Let D�αL ∈ F �αL. Since D�αL is con-
tained in F �αL, we know that αL does not satisfy D and so it does not satisfy
touchedα(D). Hence, touchedα(D) cannot be contained in fα(F ), implying that
F �α 1̀ untouchedα(D). But, D�αL = untouchedα(D) since var(αL) = var(α)
and thus it follows that F �α 1̀ D�αL.

When the (ordinary) positive reduct is used for SDCL solving, the following
property holds [20]: Assume the solver has a current assignment α = αd ∪ αu
where αd consists of all the assignments that were made by the decision heuristic
and αu consists of all assignments that were derived via unit propagation. If the
solver then finds that the positive reduct of its formula and the assignment α
is satisfiable, it can learn the clause that blocks αd instead of the longer clause
that blocks α, thus pruning the search space more effectively. This is allowed
because the clause that blocks αd is guaranteed to be propagation redundant.

The same holds for the filtered positive reduct and the argument is analogous
to the earlier one [20]: Assume the filtered positive reduct of F and α = αd ∪αu
is satisfiable. Then, the clause that blocks α is set-propagation redundant with
respect to F and thus there exists an assignment αL such that F �α 1̀ F �αL. But
then, since unit propagation derives all the assignments of αu from F �αd, it must
also hold that F �αd 1̀ F �αL, and so the clause that blocks αd is propagation
redundant with respect to F and (witness) assignment ω = αL.

Finally, observe that the filtered positive reducts fαd
(F ) and fα(F ) are not

always equisatisfiable. To see this, consider the formula F = (x ∨ y) ∧ (x ∨ y)
and the assignments α = x y and αd = x. Clearly, the unit clause y is derived
from F �αd. Now, observe that fα(F ) is satisfiable while fαd

(F ) is unsatisfiable.
It thus makes sense to first compute the filtered positive reduct with respect to
α and then—in case it is satisfiable—remove the propagated literals to obtain a
shorter clause.

The PR Reduct

We showed in the previous section that the filtered positive reduct charac-
terizes precisely the set-propagation-redundant clauses. Since set-propagation-
redundant clauses are a subset of propagation-redundant clauses [19], it is natural
to search for an encoding that characterizes the propagation-redundant clauses,
which could possibly lead to an even more aggressive pruning of the search space.
As we will see in the following, such an encoding must necessarily be large be-
cause it has to reason over all possible clauses of a formula. We thus believe that
it is hardly useful for practical SDCL solving.

The positive reduct and the filtered positive reduct yield small formulas that
can be easily solved in practice. The downside, however, is that nothing can be
learned from their unsatisfiability. This is different for a pruning predicate that
encodes propagation redundancy:
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Theorem 2. If a clause l1 ∨ · · · ∨ lk is not propagation redundant with respect
to a formula F , then F implies l1 ∧ · · · ∧ lk.

Proof. Assume l1 ∨ · · · ∨ lk is not propagation redundant with respect to F , or
equivalently that all assignments ω with F �l1 . . . lk 1̀ F �ω agree with l1 . . . lk.
Then, no assignment that disagrees with l1 . . . lk can satisfy F . As a consequence,
F implies l1 ∧ · · · ∧ lk.

By solving a pruning predicate for propagation-redundant clauses, we thus not
only detect if the current assignment can be pruned (in case the predicate is
satisfiable), but also if the formula can only possibly be satisfied by extensions
of the current assignment (in case the predicate is unsatisfiable). This is in
contrast to the positive reduct and the filtered positive reduct, which often only
need to consider a small subpart of the original formula. We thus believe that
such an encoding is not useful in practice. In the following, we present a possible
encoding which—due to the above reasons—we did not evaluate in practice.
Nevertheless, performing such an evaluation is still part of our future work.

In the definition of propagation-redundant clauses, the assignment ω does
not necessarily assign the same variables as α. To deal with this, we use the idea
of the so-called dual-rail encoding [10, 30, 8]. In the dual-rail encoding, a given
variable x is replaced by two new variables xp and xn. The intuitive idea is that
xp is true whenever the original variable x is supposed to be true and xn is true
whenever x is supposed to be false. If both xp and xn are false, then x is supposed
to be unassigned. Finally, xp and xn cannot be true at the same time. Thus, the
dual-rail encodings of a clause are defined as follows: Let C = P ∨N be a clause
with P = x1 ∨ · · · ∨ xk containing only positive literals and N = xk+1 ∨ · · · ∨ xm
containing only negative literals. Further, let xp1, x

n
1 , . . . , x

p
m, x

n
m be new variables.

Then, the positive dual-rail encoding Cp of C is the clause

xp1 ∨ · · · ∨ x
p
k ∨ x

n
k+1 ∨ · · · ∨ xnm,

and the negative dual-rail encoding Cn of C is the clause

xn1 ∨ · · · ∨ xnk ∨ x
p
k+1 ∨ · · · ∨ x

p
m.

We can now define the PR reduct as follows:

Definition 7. Let F be a formula and α an assignment. Then, the PR reduct
prα(F ) of F and α is the formula G∧C where C is the clause that blocks α and
G is the union of the following sets of clauses where all the si are new variables:

{xp ∨ xn | x ∈ var(F ) \ var(α)},

{si ∨ touchedα(Di) ∨ untouchedα(Di)
p | Di ∈ F},

{Ln ∨ si | Di ∈ F and L ⊆ untouchedα(Di)

such that F �α 6 1̀ untouchedα(Di) \ L}.

In the last set, if L is empty, we obtain a unit clause with the literal si.
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We thus keep all the variables assigned by α but introduce the dual-rail variants
for variables of F not assigned by α. The clauses of the form xp∨xn ensure that
for a variable x, the two variables xp and xn cannot be true at the same time.

The main idea is that satisfying assignments of the PR reduct correspond to
assignments of the formula F : from a satisfying assignment τ of the PR reduct
we obtain an assignment ω over the variables of the original formula F as follows:

ω(x) =


τ(x) if x ∈ var(τ) ∩ var(F ),

1 if τ(xp) = 1,

0 if τ(xn) = 1.

Analogously, we obtain from ω a satisfying assignment τ of the filtered positive
reduct prα(F ) as follows:

τ(x) =



ω(x) if x ∈ var(α);

1 if x = xp and ω(x) = 1, or

if x = xn and ω(x) = 0, or

if x = si and ω satisfies Di;

0 otherwise.

To prove that the clause that blocks an assignment α is propagation redundant
w.r.t. a formula F if the PR reduct of F and α is satisfiable, we use the following:

Lemma 1. Let F be a formula and let α and ω be two assignments such that
F �α 1̀ F �ω. Then, F �α 1̀ F �ωx for every literal x such that var(x) ∈ var(α).

Proof. Let D�ωx ∈ F �ωx. We show that F �α 1̀ D�ωx. Clearly, x /∈ D for
otherwise D�ωx = >, which would imply D�ωx /∈ F �ωx. Therefore, the only
possible difference between D�ω and D�ωx is that x is contained in D�ω but not
in D�ωx. Now, since var(x) ∈ var(α), we know that var(x) /∈ F �α. But then,
F �α 1̀ D�ωx if and only if F �α 1̀ D�ω and thus F �α 1̀ F �ωx.

We can now show that the PR reduct precisely characterizes the propagation-
redundant clauses:

Theorem 3. Let F be a formula, α an assignment, and C the clause that
blocks α. Then, C is propagation redundant with respect to F if and only if
the PR reduct prα(F ) of F and α is satisfiable.

Proof. For the “only if” direction, assume that C is propagation redundant with
respect to F , meaning that there exists an assignment ω such that ω satisfies
C and F �α 1̀ F �ω. By Lemma 1, we can without loss of generality assume
that var(α) ⊆ var(ω). Now consider the assignment τ that corresponds to ω as
explained before Lemma 1. We show that τ satisfies prα(F ). Since the clause
C that blocks α is in prα(F ), it must be satisfied by ω. Since ω satisfies C, τ
satisfies C. Also, by construction, τ never satisfies both xp and xn for a variable
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x and so it satisfies the clauses xp ∨ xn. If, for a clause si ∨ touchedα(Di) ∨
untouchedα(Di)

p, τ satisfies si, then we know that ω satisfies Di and thus τ
must satisfy touchedα(Di) ∨ untouchedα(Di)

p.
It remains to show that τ satisfies the clause Ln ∨ si for every Di ∈ F and

every set L ⊆ untouchedα(Di) such that F �α 6 1̀ untouchedα(Di) \ L. Assume
to the contrary that, for such a clause, τ(si) = 0 and τ falsifies all literals
in Ln. Then, ω does not satisfy Di and it falsifies all literals in L. But, from
var(α) ⊆ var(ω) we know that Di�ω ⊆ untouchedα(Di) and thus it follows that
Di�ω ⊆ untouchedα(Di)\L. Hence, since F �α 6 1̀ untouchedα(Di)\L, we conclude
that F �α 6 1̀ Di�ω, a contradiction.

For the “if” direction, assume that there exists a satisfying assignment τ
of prα(F ) and consider the assignment ω that corresponds to τ as explained
before Lemma 1. Since C ∈ prα(F ), ω must satisfy C. It remains to show that
F �α 1̀ F �ω. Let Di�ω ∈ F �ω. Then, ω does not satisfy Di and so touchedα(Di)∨
untouchedα(Di)

p is falsified by τ , implying that τ must falsify si. As var(α) ⊆
var(ω), we know that Di�ω ⊆ untouchedα(Di), meaning that Di�ω is of the form
untouchedα(Di)\L for some set L ⊆ untouchedα(Di) such that ω falsifies L. But
then the clause Ln ∨ si cannot be contained in prα(F ) since it would be falsified
by τ . We thus conclude that F �ω 1̀ untouchedα(Di)\L and so F �ω 1̀ Di�ω.

Note that the last set of clauses of the PR reduct, in principle has exponentially
many clauses w.r.t. the length of the largest original clause. We leave it to future
work to answer the question whether non-exponential encodings exist. But even
if a polynomial encoding can be found, we doubt its usefulness in practice.

Implementation

We implemented a clean-slate SDCL solver, called SaDiCaL, that can learn
PR clauses using either the positive reduct or the filtered positive reduct. It con-
sists of around 3K lines of C and is based on an efficient CDCL engine using
state-of-the-art algorithms, data structures, and heuristics, including a variable-
move-to-front decision heuristic [5], a sophisticated restart policy [4], and ag-
gressive clause-data-based reduction [2]. Our implementation provides a simple
but efficient framework to evaluate new SDCL-inspired ideas and heuristics.

The implementation closely follows the pseudo-code shown in Fig. 1 and
computes the pruning predicate before every decision. This is costly in general,
but allows the solver to detect PR clauses as early as possible. Our goal is
to determine whether short PR proofs can be found automatically. The solver
produces PR proofs and we verified all the presented results using proof checkers.
The source code of SaDiCaL is available at http://fmv.jku.at/sadical.

Two aspects of SDCL are crucial: the pruning predicate and the decision
heuristics. For the pruning predicate we ran experiments with both the positive
reduct and the filtered positive reduct. The initially proposed decision heuristics
for SDCL [20] are as follows: Pick the variable that occurs most frequently in
short clauses. Also, apart from the root-node branch, assign only literals that
occur in clauses that are touched but not satisfied by the current assignment.
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We added another restriction: whenever a (filtered) positive reduct is sat-
isfiable, make all literals in the witness (i.e., the satisfying assignment of the
pruning predicate) that disagree with the current assignment more important
than any other literal in the formula. This restriction is removed when the solver
backtracks to the root node (i.e., when a unit clause is learned) and added again
when a new PR clause is found. The motivation of this restriction is as follows:
we observed that literals in the witness that disagree with the current assign-
ment typically occur in short PR clauses; making them more important than
other literals increases the likelihood of learning short PR clauses.

Evaluation

In the following, we demonstrate that the filtered positive reduct allows our
SDCL solver to prove unsatisfiability of formulas well-known for having only
exponential-size resolution proofs. We start with Tseitin formulas [32, 11]. In
short, a Tseitin formula represents the following graph problem: Given a graph
with 0/1-labels for each vertex such that an odd number of vertices has label
1, does there exist a subset of the edges such that (after removing edges not
in the subset) every vertex with label 0 has an even degree and every vertex
with label 1 has an odd degree? The answer is no as the sum of all degrees
is always even. The formula is therefore unsatisfiable by construction. Tseitin
formulas defined over expander graphs require resolution proofs of exponential
size [33] and also appear hard for SDCL when using the ordinary positive reduct
as pruning predicate. We compare three settings, all with proof logging:

(1) plain CDCL,
(2) SDCL with the positive reduct pα(F ), and
(3) SDCL with the filtered positive reduct fα(F ).

Additionally, we include the winner of the 2018 SAT Competition: the CDCL-
based solver MapleLCMDistChronoBT (short MLBT) [29]. The results are shown
in Table 1. The last column shows the proof-validation times by the formally
verified checker in ACL2. To verify the proofs for all our experiments, we did the
following: We started with the PR proofs produced by our SDCL solver using
the filtered positive reduct. We then translated them into DRAT proofs using
the pr2drat tool [17]. Finally, we used the drat-trim checker to optimize the
proofs (i.e., to remove redundant proof parts) and to convert them into the LRAT
format, which is the format supported by the formally verified proof checker.

Table 1 shows the performance on small (Urquhart-s3*), medium (Urquhart-
s4*), and large (Urquhart-s5*) Tseitin formulas running on a Xeon E5-2690 CPU
2.6 GHz with 64 GB memory.5 Only our solver with the filtered positive reduct
is able to efficiently prove unsatisfiability of all these instances. Notice that
with the ordinary positive reduct it is impossible to solve any of the formulas.
There may actually be a theoretical barrier here. The LSDCL solver also uses the

5 Log files, benchmarks and source code are available at http://fmv.jku.at/sadical.
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Table 1. Runtime Comparison (in Seconds) on the Tseitin Benchmarks [33, 11].

formula MLBT [29] LSDCL [20] plain pα(F ) fα(F ) ACL2

Urquhart-s3-b1 2.95 5.86 16.31 > 3600 0.02 0.09
Urquhart-s3-b2 1.36 2.4 2.82 > 3600 0.03 0.13
Urquhart-s3-b3 2.28 19.94 2.08 > 3600 0.03 0.16
Urquhart-s3-b4 10.74 32.42 7.65 > 3600 0.03 0.17

Urquhart-s4-b1 86.11 583.96 > 3600 > 3600 0.32 2.37
Urquhart-s4-b2 154.35 1824.95 183.77 > 3600 0.11 0.78
Urquhart-s4-b3 258.46 > 3600 129.27 > 3600 0.16 1.12
Urquhart-s4-b4 > 3600 > 3600 > 3600 > 3600 0.14 1.17

Urquhart-s5-b1 > 3600 > 3600 > 3600 > 3600 1.27 9.86
Urquhart-s5-b2 > 3600 > 3600 > 3600 > 3600 0.58 4.38
Urquhart-s5-b3 > 3600 > 3600 > 3600 > 3600 1.67 17.99
Urquhart-s5-b4 > 3600 > 3600 > 3600 > 3600 2.91 24.24

Table 2. Runtime Comparison (in Seconds) on the Pigeon-Hole Formulas.

formula MLBT [29] LSDCL [20] plain pα(F ) fα(F ) ACL2

hole20 > 3600 1.13 > 3600 0.22 0.55 6.78
hole30 > 3600 8.81 > 3600 1.71 4.30 87.58
hole40 > 3600 43.10 > 3600 7.94 20.38 611.24
hole50 > 3600 149.67 > 3600 25.60 68.46 2792.39

positive reduct, but only for assignments with at most two decision literals. As a
consequence, the overhead of the positive reduct is small. In the future we plan
to develop meaningful limits for SaDiCaL as well.

We also ran experiments with the pigeon-hole formulas. Although these for-
mulas are hard for resolution, they can be solved efficiently with SDCL using
the positive reduct [20]. Table 2 shows a runtime comparison, again including
PR proof logging, for pigeon-hole formulas of various sizes. Notice that the com-
putational costs of the solver with the filtered positive reduct are about 3 to 4
times as large compared to the solver with the positive reduct. This is caused by
the overhead of computing the filtering. The sizes of the PR proofs produced by
both versions are similar. Our solver with the positive reduct is about four times
as fast compared to the SDCL version (only positive reduct) of Lingeling [20],
in short LSDCL. As the heuristics and proof sizes of our solver and LSDCL are
similar, the better performance is due to our dedicated SDCL implementation.

Finally, we performed experiments with the recently released 2018 SAT Com-
petition benchmarks. We expected slow performance on most benchmarks due
to the high overhead of solving pruning predicates before making decisions. How-
ever, our solver outperformed the participating solvers on mutilated chessboard
problems [27] which were contributed by Alexey Porkhunov (see Table 3).

For example, our solver can prove unsatisfiability of the 18 × 18 mutilated
chessboard in 43.88 seconds. The filtered positive reduct was crucial to obtain
this result. The other solvers, apart from CaDiCaL solving it in 828 seconds,
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Table 3. Runtime Comparison (in Seconds) on the Mutilated Chessboard Formulas.

formula MLBT [29] LSDCL [20] plain pα(F ) fα(F ) ACL2

mchess 15 51.53 1473.11 2480.67 > 3600 13.14 29.12
mchess 16 380.45 > 3600 2115.75 > 3600 15.52 36.86
mchess 17 2418.35 > 3600 > 3600 > 3600 25.54 57.83
mchess 18 > 3600 > 3600 > 3600 > 3600 43.88 100.71

timed out after 5000 seconds during the competition (on competition hardware).
Resolution proofs of mutilated chessboard problems are exponential in size [1],
which explains the poor performance of CDCL solvers. On these problems, like
on the Tseitin formulas, our solver performed much better with the filtered
positive reduct than with the positive reduct. The results are robust with respect
to partially and completely scrambling formulas as suggested by [6], with the
exception of the pigeon hole formulas, which needs to be investigated.

Conclusion

We introduced two new SAT encodings for pruning the search space in satis-
faction-driven clause learning (SDCL). The first encoding, called the filtered
positive reduct, is easily solvable and prunes the search space more aggressively
than the positive reduct (which was used when SDCL was initially introduced).
The second encoding, called the PR reduct, might not be useful in practice
though it precisely characterizes propagation redundancy.

Based on the filtered positive reduct, we implemented an SDCL solver and
our experiments show that the solver can efficiently prove the unsatisfiability
of the Tseitin formulas, the pigeon-hole formulas, and the mutilated chessboard
problems. For all these formulas, CDCL solvers require exponential time due to
theoretical restrictions. Moreover, to the best of our knowledge, our solver is the
first to generate machine-checkable proofs of unsatisfiability of these formulas.
We certified our results using a formally verified proof checker.

Although our SDCL solver can already produce proofs of formulas that are
too hard for CDCL solvers, it is still outperformed by CDCL solvers on many
simpler formulas. This seems to suggest that also in SAT solving, there is no free
lunch. Nevertheless, we believe that the performance of SDCL on simple formu-
las can be improved by tuning the solver more carefully, e.g., by only learning
propagation-redundant clauses when this is really beneficial, or by coming up
with a dedicated decision heuristic. To deal with these problems, we are currently
investigating an approach based on reinforcement learning.

Considering our results, we believe that SDCL is a promising SAT-solving
paradigm for formulas that are too hard for ordinary CDCL solvers. Finally,
proofs of challenging problems can be enormous in size, such as the 2 petabytes
proof of Schur Number Five [16]; SDCL improvements have the potential to
produce proofs that are substantially smaller and faster to verify.
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