
Syddansk Universitet

Efficient Certified RAT Verification

Cruz-Filipe, Luís; Heule, Marijn; Hunt, Jr, Warren; Kaufmann, Matt; Schneider-Kamp, Peter

Published in:
Automated Deduction - CADE 26

DOI:
10.1007/978-3-319-63046-5_14

Publication date:
2017

Document version
Early version, also known as pre-print

Citation for pulished version (APA):
Cruz-Filipe, L., Heule, M., Hunt, Jr, W., Kaufmann, M., & Schneider-Kamp, P. (2017). Efficient Certified RAT
Verification. In L. de Moura (Ed.), Automated Deduction - CADE 26: Proceedings of the 26th International
Conference on Automated Deduction (pp. 220-236). Springer. Lecture Notes in Computer Science, Vol.. 10395,
DOI: 10.1007/978-3-319-63046-5_14

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Sep. 2018

https://doi.org/10.1007/978-3-319-63046-5_14

ar
X

iv
:1

61
2.

02
35

3v
2

 [
cs

.L
O

]
 8

 D
ec

 2
01

6

Efficient Certified RAT Verification

Luís Cruz-Filipe Marijn Heule Warren Hunt

Matt Kaufmann Peter Schneider-Kamp

December 9, 2016

Abstract

Clausal proofs have become a popular approach to validate the results
of SAT solvers. However, validating clausal proofs in the most widely
supported format (DRAT) is expensive even in highly optimized imple-
mentations. We present a new format, called LRAT, which extends the
DRAT format with hints that facilitate a simple and fast validation al-
gorithm. Checking validity of LRAT proofs can be implemented using
trusted systems such as the languages supported by theorem provers. We
demonstrate this by implementing two certified LRAT checkers, one in
Coq and one in ACL2.

1 Introduction

Consider a formula, or set of clauses implicitly conjoined, where each clause
is a list of literals (Boolean proposition letters or their negations), implicitly
disjoined. Satisfiability (SAT) solvers decide the question of whether a given
formula is satisfiable, that is, true under some assignment of true and false values
to the Boolean proposition letters of the formula. SAT solvers are used in many
applications in academia and industry, for example to check the correctness of
hardware and software. A bug in such a SAT solver could result in an invalid
claim that some hardware or software model is correct. In order to deal with this
trust issue, we believe a SAT solver should produce a proof of unsatisfiability.
In turn, this proof can and should be validated with a trusted checker.

Early work on proofs of unsatisfiability focused on resolution proofs. In short,
a resolution proof states for each new clause how to construct it via resolution
steps. Resolution proofs are easy to validate, but difficult to produce from
today’s SAT solvers. Moreover, several state-of-the-art solvers use techniques
that go beyond resolution and therefore cannot be expressed using resolution
proofs.

An alternative method is to produce clausal proofs, that is, sequences of
steps that each modify the current formula by specifying the deletion of an
existing clause or the addition of a new clause. Such proofs are supported by all
state-of-the-art SAT solvers. The most widely supported clausal proof format
is called DRAT, which is the format required by the recent SAT competitions.

1

http://arxiv.org/abs/1612.02353v2

The DRAT proof format was designed to make it as easy as possible to produce
proofs, in order to make it easy for implementations to support it. DRAT
checkers increase the confidence in the correctness of unsatisfiability results,
but there is still room for improvement, i.e., by checking the result using a
highly-trusted system.

Our tool chain works as follows. When a SAT solver produces a clausal
proof of unsatisfiability for a given formula, we validate this proof using a fast
non-certified proof checker, which then produces an optimized proof with hints.
Then, using a certified checker, we validate that the optimized proof is indeed
a valid proof for the original formula. We do not need to trust whether the
original proof is correct. In fact, the non-certified checker might even produce
an optimized proof from an incorrect proof.

Validating clausal proofs is potentially expensive. For each clause addition
step in a proof of unsatisfiability, unit clause propagation (explained below)
should result in a conflict when performed on the current formula, based on an
assignment obtained by negating the clause to be added. Thus, we may need
to propagate thousands of unit clauses to check the validity of a single clause
addition step. Scanning over the formula thousands of times for a single check
would be very expensive. This problem has been mitigated through the use
of watch pointers. However, validating clausal proofs is often costly even with
watch pointers.

In this paper we first present the new expressive proof format LRAT and
afterwards show that this proof format enables the development of efficient
certified proof checkers. This work builds upon previous work of some of the
co-authors [4], as the LRAT format and the certified Coq checker presented
here extend the GRIT format and the certified Coq checker presented there,
respectively. Additionally, we implemented an efficient certified checker in the
ACL2 theorem proving system.

The LRAT format poses several restrictions on the syntax in order to make
validation as fast as possible. Each clause in the proof must be suitably sorted.
This allows a simple check that the clause does not contain duplicate or com-
plementary literals. Hints are also sorted in such a way that they become unit
from left to right. Finally, resolution candidates are sorted by increasing clause
index; this allows scanning the formula once.

This paper is structured as follows. In Section 2 we shortly recapitulate the
checking procedure for clausal proofs based on the DRAT format. The novel
LRAT format is introduced in Section 3. We demonstrate the benefits of LRAT
by extracting two certified checkers for the format: one in Coq (Section 4) and
one in ACL2 (Section 5). We draw some conclusions in Section 6.

2 Background on Clausal Proof Checking

Each step in a clausal proof is either the addition or the deletion of a clause.
Each clause addition step should be redundant, that is, it should preserve sat-
isfiability; this should be checkable in polynomial time. The polynomial time

2

checking procedure is described in detail below. Clause deletion steps need not
be checked, because they trivially preserve satisfiability. The main reason to
include clause deletion steps in + proofs is to reduce the computational and
memory costs to validate proofs.

A clause with only one literal is called a unit clause. Checking whether a
clause is redundant with respect to a CNF formula is computed via Unit Clause
Propagation (UCP). UCP works as follows: For each unit clause (l) all literal
occurrences of l̄ are removed from the formula. Notice that this can result in
new unit clauses. UCP terminates when either no literals can be removed or
when it results in a conflict, i.e., all literals in a clause have been removed.

Let C be a clause. C denotes the negation of a clause, which is a conjunction
of all negated literals in C. A clause C has the redundancy property Asymmetric
Tautology (AT) with respect to a CNF formula F iff UCP on F ∧(C) results in a
conflict. The core redundancy property used in the DRAT format is Resolution
Asymmetric Tautology (RAT). A clause C has the RAT property with respect
to a CNF formula F if there exists a literal l ∈ C such that for all clauses D in
F with ¬l ∈ D, the clause C ∨ (D \ {¬l}) has the property AT with respect to
F . Notice that RAT property is a generalization of the AT property.

The DRAT proof checking works as follows. Let F be the input formula and
P be the clausal proof. At each step i, the formula is modified. The initial state
is: F0 = F . At step i > 0, the ith line of P is read. If the line has the prefix d,
then the clause C described on that line is removed: Fi = Fi−1\{C}. Otherwise,
if there is no prefix, then C must have the RAT property with respect to formula
Fi−1. This must be validated. Recall that the RAT property requires a pivot
literal l. In the DRAT formula it is expected that the first literal in C is the
pivot. If the RAT property can be validated, then the clause is added to the
formula: Fi = Fi−1 ∧ C. If the validation fails, then the proof is invalid.

The empty clause, typically at the end of the proof, should have the AT
property as it does not have a first literal.

3 Introducing the LRAT Format

The Linear RAT (LRAT) proof format is based on the RAT property, and it
is designed to make proof checking as straightforward as possible. The purpose
of LRAT proofs is to facilitate the implementation of proof validation software
using highly trusted systems such as theorem provers. An LRAT proof can be
produced when checking a DRAT proof with a non-certified checker (cf. the end
of this section).

The most costly operation during clausal proof validation is finding the unit
clauses during unit propagation. The GRIT format [4] removes this problem
by requiring proofs to include hints that list all unit clauses. This makes it
much easier and faster to validate proofs, because the checker no longer needs
to find the unit clauses. However, the GRIT format does not allow checking of
all possible clauses that can be learned by today’s SAT solvers and expressible
in the DRAT format. The LRAT format extends the GRIT format to remove

3

this limitation.
Unlike the GRIT format, the LRAT format supports checking clauses with

the RAT property. To check such a clause, a pivot element is chosen from it,
and then the RAT property is checked for all clauses containing the negation
of the pivot element. In order to enable efficient RAT checking the LRAT for-
mat requires that all clauses containing the negated-pivot element be specified.
Furthermore, for each resolvent it has to be specified how to perform UCP as is
done for AT in the GRIT approach.

While the LRAT format is semantically an extension of the GRIT format, we
updated two aspects. First, the clauses from the original CNF are not included,
as this required verification that these clauses do indeed occur in the original
CNF. The advantage of working only with a subset of clauses from the original
CNF can be achieved by starting with a deletion step for clauses not relevant
for the proof. Second, the syntax of the deletion information has been extended
to include a clause identifier. To be recognized, deletion statements are now
identified with lines that start with an index followed by “d”. This change
makes the format stable under permutations of lines. In practice, checkers
expect proof statements in ascending order, which easily can be achieved by
sorting numerically, e.g., using “sort -n”.

To demonstrate these two changes, we first consider an example, which does
not use the RAT property. Figure 1 shows an original CNF, the DRUP proof
obtained by a SAT solver, the GRIT version of that proof, and, finally, the
equivalent LRAT proof.

To specify a redundant clause with the RAT property, we extend the format
used for the AT property in GRIT. The line starts with the clause identifier
of the new clause followed by the 0-terminated new clause. The first literal of
the new clause is required to be the pivot literal. Next, for each clause with
clause identifier i containing the negated-pivot element, we specify the (negative)
integer −i followed by a (possibly empty) list of (positive) clause identifiers used
in UCP of the new clause with clause i.

For example, consider the first line of the LRAT proof in Figure 2:

9 1 0 -2 6 8 -5 1 8 -7 6 1 0

The first number, 9 expresses that the new clause will get identifier 9. The
numbers in between the identifier and the first 0 express the literals in the
clause. In clause of clause 9 this is only literal 1. After the first 0 follow the
hints. All hints are clause identifiers. Positive hints express that the clause
becomes unit or falsified. Negative hints express that the clause is a candidate
for a RAT check, i.e., it contains the complement of the pivot element. In the
example line, there are three such negative hints: -2, -5, and -7. The LRAT
format prescribes that negative literals are listed in increasing order of their
absolute value.

After a negative hint there may be positive hints that list the identifiers of
clauses that become unit and eventually falsified. For example, assigning the

4

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRUP format

1 2 0

d 1 -3 2 0

1 3 0

d 1 4 3 0

1 0

d 1 3 0

d 1 2 0

d 1 -4 -2 0

2 0

d -1 4 2 0

d 2 -4 3 0

0

GRIT format

1 1 2 -3 0 0

2 -1 -2 3 0 0

3 2 3 -4 0 0

4 -2 -3 4 0 0

5 -1 -3 -4 0 0

6 1 3 4 0 0

7 -1 2 4 0 0

8 1 -2 -4 0 0

9 1 2 0 1 6 3 0

0 1 0

10 1 3 0 9 8 6 0

0 6 0

11 1 0 10 9 4 8 0

0 10 9 8 0

12 2 0 11 7 5 3 0

0 7 3 0

13 0 11 12 2 4 5 0

LRAT format

9 1 2 0 1 6 3 0

9 d 1 0

10 1 3 0 9 8 6 0

10 d 6 0

11 1 0 10 9 4 8 0

11 d 10 9 8 0

12 2 0 11 7 5 3 0

12 d 7 3 0

13 0 11 12 2 4 5 0

Figure 1: A CNF formula and three similar proofs of unsatisfiability in the
DRUP, GRIT and LRAT format, respectively. Formula clauses are shown in
green, deletion information in blue, learned clauses in red, and unit propagation
information in yellow. The proofs do not have clauses based on the RAT prop-
erty. The spacing shown aims to improve readability, but extra spacing does
not effect the meaning of a LRAT file.

literal in the new clause (1) to false as well as the literals in the second clause
apart from the pivot (2 and -3), then clause six becomes unit (4), which in turn
falsifies clause eight.

There are two extensions to this kind of simple RAT checking. (1) It is pos-
sible that there are no positive hints following a negative hint. In this case, the
new clause and the candidate for a RAT check have two pairs of complementary
literals. (2) It is also possible that some positive hints are listed before the
first negative hint. In this case, these clauses (i.e., whose identifiers are listed)
become unit after assigning the literals in the new clause to false.

The full syntax of the LRAT format is given by the grammar in Figure 3,
where for the sake of sanity, whitespace (tabs and spaces) is ignored. Note that
syntactically, AT and RAT lines are both covered by RAT lines. AT is just the
special case where there is a non-empty list of only positive hints.

Producing LRAT proofs directly from SAT solvers would add significant
overhead both in runtime and memory usage, and it might require the addition
of complicated code. Instead, we extended the DRAT-trim proof checker [5] to
emit LRAT proofs. DRAT-trim already supported the emitting of optimized
proofs in the DRAT and TraceCheck+ formats. DRAT-trim emits an LRAT
proof after validation of a proof using the “-L proof.lrat” option.

5

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT format

1 0

d 1 -4 -2 0

d 1 4 3 0

d 1 2 -3 0

2 0

d -1 2 4 0

d 2 -4 3 0

0

LRAT format

9 1 0 -2 6 8 -5 1 8 -7 6 1 0

9 d 8 6 1 0

10 2 0 9 7 5 3 0

10 d 7 3 0

11 0 9 10 2 4 5 0

Figure 2: The LRAT format with the RAT property (with original clauses in
green, deletion information in blue, learned clauses in red, unit propagation
information in yellow, and resolution clauses in cyan).

〈proof〉 = {〈line〉}
〈line〉 = (〈rat〉 | 〈delete〉), “\n”
〈rat〉 = 〈id〉, 〈clause〉, “0”, 〈idlist〉, {〈res〉}, “0”
〈delete〉 = 〈id〉, “d”, 〈idlist〉, “0”
〈res〉 = 〈neg〉, 〈idlist〉
〈idlist〉 = {〈id〉}
〈id〉 = 〈pos〉
〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | . . .
〈neg〉 = “-”, 〈pos〉
〈clause〉 = {〈lit〉}, “0”

Figure 3: EBNF grammar for the LRAT format.

We implemented an uncertified checker for LRAT in C that achieves runtimes
comparable to the one from [4] on examples without RAT lines.

4 Extending the GRIT Checker to LRAT

In this section we extend the formalization of the GRIT checker from [4] to the
whole syntax of LRAT by adding results about the RAT property. We assume
familiarity with [4]. Due to the need to consider extension (1) discussed in the
previous section and its combination with extension (2), these results are a bit
more complicated than the ones previously needed.

Lemma RAT_lemma_1 : ∀ (c:CNF) (l:Literal) (cl:Clause),
(∀ (cl':Clause), CNF_in cl' c →

(entails c ((remove literal_eq_dec (negate l) cl') ++ cl))
∨ (∃ l', l' 6= l ∧ In (negate l') cl' ∧ (In l' cl ∨ entails c (negate l'::l:: cl))))

6

→ ∀ V, satisfies V c → ∃ V, satisfies V (CNF_add (l::cl) c).

In this lemma, c is the CNF we start with, and l:: cl is the clause for which
we want to verify the RAT property with respect to c. (We single out the pivot
l.) The hypothesis states that, for every clause cl' in c, either c entails the
clause obtained by removing ¬l from cl' and joining with cl, or there exists a
literal l' , distinct from the pivot, whose negation is in cl', and such that either
l' occurs in cl or c entails the disjunction of ¬l' and l:: cl.

Observe that the quantification is over all the formulas in c, rather than
over those containing ¬l' (as required by the RAT property): for formulas not
containing ¬l' the first case trivially holds, and this formulation is simpler.

Lemma RAT_lemma_2: ∀ l c cl cl', CNF_in cl' c → ~(In (negate l) cl') →

entails c ((remove literal_eq_dec (negate l) cl') ++ cl).

We then define our iterative function performing the RAT check. We refer
to [4] for the discussion of the different representations for clauses and CNFs.
The argument to RAT_check has type ICNF, which implements a CNF as a Map

(identified by an index, as in the GRIT format). It is transformed in a list,
over which we do iteration in the auxiliary function RAT_check_run. Finally, the
list L provides the witnesses for each RAT check. It is a list of pairs having
a clause identifier as first argument and either a list of clauses (used for unit
propagation to establish the first possible valid case of the RAT check) or a
literal (the duplicate literal in the second case) together with a list of clauses
used again for unit propagation to establish the second case. For legibility, we
omit several proof terms in the code below.

Definition RAT_check (c:ICNF) (pivot:Literal) (cl:Clause)
(L:list (N∗((list N)+(Literal∗(list N))))) :=

RAT_check_run c (ICNF_to_list c) pivot (Clause_to_SetClause cl) L.

Fixpoint RAT_check_run (c:ICNF) (c':list (N∗{cl:SetClause | SC_wf cl}))
(pivot:Literal) (cl:SetClause) (L:list (N∗((list N)+(Literal∗(list N))))) :=

match c' with
| nil ⇒ true

| (i,(exist cl' Hcl')):: newC ⇒

if (BT_in_dec _ _ _ _ (negate pivot) cl' Hcl')
then let LIST := get_list_from i L in

match LIST with

| inl is ⇒ (propagate c ((BT_add_all _ _ (BT_remove _ (negate pivot) cl')
(BT_add _ pivot cl))) is)

&& (RAT_check_run c newC pivot cl L)
| inr (lit,is) ⇒ match literal_eq_dec pivot lit with

| left _ ⇒ false

| right _ ⇒ (SC_has_literal (negate lit) cl' Hcl')
&& (C_has_literal lit (SetClause_to_Clause cl)

|| propagate c (BT_add _ (negate lit) (BT_add _ pivot cl)) is)
&& (RAT_check_run c newC pivot cl L)

end end

else RAT_check_run c newC pivot cl L

7

end.

The proof is technical, and for convenience divided into several lemmas.
The main theorem states that, if the RAT check succeeds, then we can add the
required clause to the CNF preserving satisfiability.

Theorem RAT_theorem : ∀ c pivot cl L, RAT_check c pivot cl L = true →

∀ V, satisfies V c →

∃ V, satisfies V (CNF_add (Clause_to_SetClause (pivot::cl)) (ICNF_to_CNF c)).

In order to use this result and check proofs of unsatisfiability that use the
RAT property, we enrich the type of actions provided by the oracle.1

Inductive Action : Type :=
| D : list ad → Action

| R : ad → Clause → list ad → Action

| A : ad → Literal → Clause → list (ad ∗ ((list ad)+(Literal∗(list ad)))) →

Action.

In the definition of refute_work, we add the corresponding case for the new
type of action.

Function refute_work (w:ICNF) (O:Oracle)
{measure Oracle_size O} : Answer :=
match (force O) with

...
| lcons (A i p cl L) O' ⇒ andb (RAT_check w p cl L)

(refute_work (add_ICNF i (p::cl) _) w) O')
end.

The proof of soundness simply requires checking the extra case, and we
obtain the same results as before.

Lemma refute_work_correct : ∀ w O, refute_work w O = true → unsat w.

Definition refute (c:list (ad ∗ Clause)) (O:Oracle) : Answer :=
refute_work (make_ICNF c) O.

Theorem refute_correct : ∀ c O, refute c O = true → unsat (make_ICNF c).

By extracting refute we again obtain a correct-by-construction checker for
proofs of unsatisfiability using the full LRAT format. If this checker returns
true when given a particular CNF and proof, this guarantees that the CNF is
indeed unsatisfiable. The universal quantification over the oracle ensures that
any errors in its implementation (and in particular in the interface connecting
it to the checker) do not affect the correctness of this answer.

1We also changed the algorithm slightly from [4]: the working set is now initialized to
contain the original CNF, which allows us to remove the action “add a formula from the
original CNF to the working set”.

8

Entailment checking. If the size of a proof is enormous, proof checking will
be expensive even for LRAT proofs. In order to make proof checking feasible
in reasonable time, one can check the proof in parallel. This can be achieved
by partitioning a proof and verifying each part independently [7]. Let P be a
proof of unsatisfiability for a CNF formula F0. We can partition P into k parts
{P1, . . . , Pk}. The formulas Fi with i ∈ {1, . . . , k} are defined as applying (but
not verifying) proof Pi to formula Fi−1. In order to verify that P is a valid proof
for F0, it is sufficient to show that all steps in the proof Pi are valid for formula
Fi−1 and that formula Fi is entailed by the formula obtained by applying Pi to
Fi−1. Finally, one of P1, . . . , Pk should contain the empty clause.

To validate a partial proof, we want to verify a reduction. In other words,
starting from a CNF, we apply and verify a sequence of actions described in
the LRAT format. In this case, we know that satisfiability of the starting CNF
(Fi−1) implies satisfiability of the resulting CNF (Fi).

In order to deal with partial proof checking, we tweak our definition of
refute_work slightly to return a pair consisting of a boolean value and a CNF.
The base case is changed: when there are no more actions, we return true

(instead of false) together with the CNF currently stored. When we derive the
empty clause, we also return true, but this time together with a CNF containing
only the empty clause. In the remaining cases, if any test fails we return false

with the formula currently stored; otherwise we propagate the result from the
recursive call.

The soundness of the main function now looks as follows.

Definition ICNF_reduces (C C':ICNF) := ∀ V, satisfies V (ICNF_to_CNF C) →

∃ V' , satisfies V' (ICNF_to_CNF C').

Lemma refute_work_correct : ∀ w O F, refute_work w O = (true,F) → ICNF_reduces w F.

Since we can test whether a formula is a CNF containing only the empty
clause, we can immediately derive the original implementation of refute and
reprove its soundness.

Definition refute (c:list (ad ∗ Clause)) (O:Oracle) : bool :=
let (b,F) := refute_work (make_ICNF c) O in

b && (if (ICNF_eq_empty_dec F) then true else false).

Theorem refute_correct : ∀ c O, refute c O = true → unsat (make_ICNF c).

Furthermore, we can provide a target CNF and check that the oracle provides
a correct reduction from the initial CNF to the target.

Definition entail (c c':list (ad ∗ Clause)) (O:Oracle) : bool :=
let (b,F) := refute_work (make_ICNF c) O in

b && (if (ICNF_all_in_dec (map snd c') _ (ICNF_to_CNF_wf F)) then true else false).

Theorem entails_correct : ∀ c c' O, entail c c' O = true →

ICNF_reduces (make_ICNF c) (make_ICNF c').

9

Results. After adapting the interface to be able to transform proofs in the
full LRAT format into the oracle syntax defined above, we tested the extracted
checker on several unsatisfiability proofs output by SAT solvers supporting that
format.

We also used the possibility of verifying entailments to check the transfor-
mation proof from [6], the only SAT-related step in the original proof of the
Boolean Pythagorean Triples problem that we were unable to verify in [4]. The
certified LRAT checker in Coq was able to verify this proof in 8 minutes and 25
seconds, including approx. 15 seconds for the entailment checking.

5 LRAT Checker in ACL2

In this section, in order to demonstrate the general applicability of our approach,
we extended the ACL2-based DRAT checker from [8] to permit the checking of
UNSAT proofs in the LRAT format. We have certified this extension using the
ACL2 theorem-proving system.

We outline our formalization below using the Lisp-style ACL2 syntax, with
comments to assist readers unfamiliar with Lisp syntax. Note that embedded
comments begin with a “;” character and continue to the end of a line.

We omit the code here but note that it has been optimized for efficiency,
in particular using applicative hash tables for formulas that are heuristically
cleaned on occasion after deletion. Of course, correctness of such optimizations
was necessarily proved as part of the overall correctness proof. The code and
top-level theorem are available from the top-level file top.lisp in the full proof
development [1], included in the GitHub repository [3] that holds ACL2 and its
libraries. Also see the README file in that directory. Here we focus primarily on
the statement of correctness.

The top-level correctness theorem is as follows.

(defthm main-theorem

(implies (and (formula-p formula) ; Valid formula and

(refutation-p proof formula)) ; Valid proof with empty clause

(not (satisfiable formula)))) ; Imply unsatisfiable

The command defthm is an ACL2 system command that demands that the
ACL2 theorem-proving system establish the validity of the claim that follows
the name (in this case main-theorem) of the theorem to be checked.

The theorem above is expressed in terms of functions formula-p, refutation-p,
and satisfiable. The first of these recognizes structures that represent sets
of clauses; our particular representation uses applicative hash tables [2]. The
function refutation-p recognizes valid proofs that yield a contradiction; thus,
it calls other functions, including one that performs the necessary RAT checks.
We verify a proof by checking that each step of an alleged proof redundantly
extends a given formula.

Finally, we define satisfiable to mean that there exists an assignment
satisfying a given formula. The first definition says that the given assignment

10

satisfies the given formula, while the second uses an existential quantifier to say
that some assignment satisfies the given formula.

(defun solution-p (assignment formula)

(and (clause-or-assignment-p assignment)

(formula-truep formula assignment)))

(defun-sk satisfiable (formula)

(exists assignment (solution-p assignment formula)))

Before our SAT proof checker can be called, an LRAT-style proof is read
from a file, and during the reading process it is converted into an internal Lisp
format that is used by our checker. Using the ACL2 theorem prover, we have
verified the theorem main-theorem above, which states that our code correctly
checks the validity of a proof of the empty clause.

Results. The ACL2 checker is able to check the validity of adding each of the
68,667 clauses in the transformation proof from [6] in less than 9 seconds. The
certified checking of this LRAT proof is almost as fast as non-certified checking
and conversion of the DRAT proof into the LRAT proof by DRAT-trim. This
is a testament to the efficiency potential of the LRAT format in particular,
and the approach taken in our work in general. At the moment of writing, the
entailment checking has not been implemented yet to the ACL2 checker, but
this can easily be added in a similar way as we did for the Coq checker.

6 Conclusions

We have introduced a novel format for clausal proof checking, Linear RAT

(LRAT), which extends the GRIT format [4] to support checking all techniques
used in state-of-the-art SAT solvers. We have shown that it allows for im-
plementing efficient certified proof checkers for UNSAT proofs with the RAT
property, both using Coq and using ACL2. The ACL2 LRAT checker is al-
most as fast as —and in some cases even faster than— non-certified checking
by DRAT-trim of the corresponding DRAT proof. This suggests that certified
checking can be achieved with a reasonable overhead.

Furthermore, we have shown that our Coq checker’s ability to check entail-
ment and thereby transformation proofs has allowed us to check the transfor-
mation proof from [6], the only SAT-related step in the original proof of the
Boolean Pythagorean Triples problem that we were unable to verify in [4].

11

References

[1] ACL2 LRAT checker. https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/,
Accessed: 2016.

[2] ACL2 Community. ACL2 documentation topic: FAST-ALISTS.
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-AL

Accessed: 2016.

[3] ACL2 Community. ACL2 system and libraries on GitHub.
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/,
Accessed: 2016.

[4] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient certified
resolution proof checking. CoRR, abs/1610.06984, 2016.

[5] M. Heule. The DRAT format and DRAT-trim checker.
CoRR, abs/1610.06229, 2016. Source code available from:
https://github.com/marijnheule/drat-trim.

[6] M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In SAT 2016, pages 228–
245, 2016.

[7] M. J. H. Heule and A. Biere. Compositional propositional proofs. In
M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for Pro-

gramming, Artificial Intelligence, and Reasoning: 20th International Confer-

ence, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, pages
444–459, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[8] N. Wetzler, M. J. Heule, and J. Warren A. Hunt. Mechanical verification
of SAT refutations with extended resolution. In ITP 2013, volume 7998 of
LNCS, pages 229–244. Springer, 2013.

12

https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/
https://github.com/marijnheule/drat-trim

	1 Introduction
	2 Background on Clausal Proof Checking
	3 Introducing the LRAT Format
	4 Extending the GRIT Checker to LRAT
	5 LRAT Checker in ACL2
	6 Conclusions

