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Solving and Verifying the boolean Pythagorean
Triples problem via Cube-and-Conquer

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek

The University of Texas at Austin, Swansea University, and University of Kentucky

Abstract. The boolean Pythagorean Triples problem has been a long-
standing open problem in Ramsey Theory: Can the set N = {1, 2, . . . }
of natural numbers be divided into two parts, such that no part contains
a triple (a, b, c) with a2 + b2 = c2 ? A prize for the solution was offered
by Ronald Graham over two decades ago. We solve this problem, prov-
ing in fact the impossibility, by using the Cube-and-Conquer paradigm,
a hybrid SAT method for hard problems, employing both look-ahead
and CDCL solvers. An important role is played by dedicated look-ahead
heuristics, which indeed allowed to solve the problem on a cluster with
800 cores in about 2 days. Due to the general interest in this mathemati-
cal problem, our result requires a formal proof. Exploiting recent progress
in unsatisfiability proofs of SAT solvers, we produced and verified a proof
in the DRAT format, which is almost 200 terabytes in size. From this we
extracted and made available a compressed certificate of 68 gigabytes,
that allows anyone to reconstruct the DRAT proof for checking.

1 Introduction

Propositional satisfiability (SAT, for short) is a formalism that allows for rep-
resentation of all finite-domain constraint satisfaction problems. Consequently,
all decision problems in the class NP, as well as all search problems in the class
FNP [8,29,34,19], can be polynomially reduced to SAT. Due to great progress
with SAT solvers, many practically important problems are solved using such
reductions. SAT is especially an important tool in hardware verification, for
example model checking [7] and reactive systems checking. In this paper we
are, however, dealing with a different application of SAT, namely as a tool in
computations of configurations in a part of Mathematics called Extremal Com-
binatorics, especially Ramsey theory. In this area, the researcher attempts to
find various configurations that satisfy some combinatorial conditions, as well as
values of various parameters associated with such configurations [47].

One important result of Ramsey theory, the van der Waerden Theorem [43],
has been studied by the SAT community [13]. That theorem says that for all
natural numbers k and l there is a number n, so that whenever the integers
1, . . . , n are partitioned into k sets, there is a set containing an arithmetic pro-
gression of length l. A good deal of effort has been spent on specific values of the
corresponding number theoretic function, vdW(k, l). Two results on specific val-
ues: vdW(2, 6) = 1132 and vdW(3, 4) = 293, were obtained by M. Kouril [31,30]
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using specialized FPGA-based SAT solvers. Other examples include the Schur
Theorem [41] on sum-free subsets, its generalization known as Rado’s Theorem
[40], and a generalization of van der Waerden numbers [4]. In this paper we
investigate two areas:

1. We show the “boolean Pythagorean triples partition theorem” (Theorem 1),
an analogue of Schur’s Theorem.

2. We develop methods to compute numbers in Ramsey theory by SAT solvers.

Cooper and Overstreet [9] discussed the Ramsey property for Pythagorean
triples, which are (a, b, c) ∈ N3 with a2 + b2 = c2. They studied the question
whether all partitions of integers into two parts must exhibit one part with
a Pythagorean triple. If for some n > 2 every partition of 1, . . . , n into two
parts ensures a Pythagorean triple in one part, then that property holds for all
partitions of 1, . . . ,m for m > n and hence for partitioning the entire set of
natural numbers into two parts. The main mathematical result of this paper is:

Theorem 1. The set {1, . . . , 7824} of natural numbers can be partitioned into
two parts, such that no part contains a Pythagorean triple (a, b, c ∈ N with a2 +
b2 = c2), while this is impossible for {1, . . . , 7825}.

To emphasize, the situation of Theorem 1 is not as in previous applications
of SAT to Ramsey theory, where SAT only “filled out the numerical details”,
but the existence of these numbers was not known (and as such is a good success
of Automated Theorem Proving). The following generalization is a form of the
Erdős and Graham problem [17,11].

Conjecture 1. For every k ≥ 2 there exist Ptn(k) ∈ N (the “Pythagorean triple
number”), such that {1, . . . ,Ptn(k)− 1} can be partitioned into k parts with no
part containing a Pythagorean triple, while this is impossible for {1, . . . ,Ptn(k)}.

The proof of Theorem 1 is by considering two SAT problems. One showing
that {1, . . . , 7824} can be partitioned into two parts such that no part contains a
Pythagorean triple (i.e., the case n = 7824 is satisfiable). The other one showing
that any partitioning of {1, . . . , 7825} into two parts contains a Pythagorean
triple (i.e., the case n = 7825 is unsatisfiable). Now a Pythagorean triple-free
partition for n = 7824 is checkable in a second, but the absence of such a partition
for n = 7825 requires a more “durable proof” than just the statement that we
run a SAT solver (in some non-trivial fashion!) which answered UNSAT — to
become a mathematically accepted theorem, our assertion for n = 7825 carries a
stronger burden of proof. Fortunately, the SAT community has spent a significant
effort to develop techniques that allow to extract, out of a failed attempt to get
a satisfying assignment, an actual proof of the unsatisfiability.

It is worth noting the similarities and differences to the endeavours of extend-
ing mathematical arguments into actual formal proofs, using tools like Mizar [1]
and Coq [2]. Cases, where intuitions (or convictions) about completeness of math-
ematical arguments fail, are known [45]. So T. Hales in his project flyspeck [3]
extracted and verified his own proof of the Kepler Conjecture. Now the core of
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the argument in such examples has been constructed by mathematicians. Very
different from that, the proofs for unsatisfiability coming from SAT solvers are,
from a human point of view, a giant heap of random information (no direct
understanding is involved). But we don’t need to search for the proof — the
present generation of SAT solvers supports emission of unsatisfiability proofs
and standards for such proofs exist [46], as well as checkers that the proof is
valid. However the proof that we will encounter in our specific problem is of
very large size. In fact, even storing it is a significant task, requiring significant
compression. We will tackle these problems in this paper.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive
literal x and the negative literal x̄. A clause is a finite set of literals; so it may
contain complementary literals, in which case the clause is tautological. The
empty clause is denoted by ⊥. If convenient, we write a clause as a disjunction
of literals. Since a clause is a set, no literal occurs several times, and the order
of literals in it does not matter. A (CNF) formula is a conjunction of clauses,
and thus clauses may occur several times, and the order of clauses does matter;
in many situations these distinctions can be ignored, for example in semantical
situations, and then we consider in fact finite sets of clauses.

A partial assignment is a function τ that maps a finite set of literals to
{0, 1}, such that for v ∈ {0, 1} holds τ(x) = v if and only if τ(x̄) = ¬v. A
clause C is satisfied by τ if τ(l) = 1 for some literal l ∈ C, while τ satisfies
a formula F if it satisfies every clause in F . If a formula F contains ⊥, then
F is unsatisfiable. A formula F logically implies another formula F ′, denoted
by F |= F ′, if every satisfying assignment for F also satisfies F ′. A transition
F  F ′ is sat-preserving, if either F is unsatisfiable or both F, F ′ are satisfiable,
while the transition if unsat-preserving if either F is satisfiable or both F, F ′

are unsatisfiable. Stronger, F, F ′ are satisfiability-equivalent if both formulas are
satisfiable or both unsatisfiable, that is, iff the transition F  F ′ is both sat- and
unsat-preserving. We note that if F |= F ′, then F  F ′ is sat-preserving, and
that F  F ′ is sat-preserving iff F ′  F is unsat-preserving. Clause addition is
always unsat-preserving, clause elimination is always sat-preserving.

Resolution and Extended Resolution. The resolution rule (see [18, Sub-
sections 1.15-1.16]) infers from two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and C2 =
(x̄ ∨ b1 ∨ . . . ∨ bm) the resolvent C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), by resolv-
ing on variable x. C is logically implied by any formula containing C1 and C2.
For a given CNF formula F , the extension rule [42] allows one to iteratively
add definitions of the form x := a ∧ b by adding the extended resolution clauses
(x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F , where x is a new variable and a and b are
literals in the current formula. The addition of these clauses is sat-equivalent.

Unit Propagation. For a CNF formula F , unit propagation simplifies F based
on unit clauses; that is, it repeats the following until fixpoint: if there is a unit
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clause {l} ∈ F , remove all clauses that contain the literal l from the set F
and remove the literal l̄ from the remaining clauses in F . This process is sat-
equivalent. If unit propagation on formula F produces complementary units {l}
and {l̄}, we say that unit propagation derives a conflict and write F `1 ⊥ (this
relation also holds if ⊥ is already in F ).

Ordinary resolution proofs (or “refutations” – derivations of the empty clause)
just add resolvents. This is too inefficient, and is extended via unit propagation
as follows. For a clause C let C denote the conjunction of unit clauses that falsify
all literals in C. A clause C is an asymmetric tautology with respect to a CNF
formula F if F ∧ C `1 ⊥. This is equivalent to the clause C being derivable
from F via input resolution [20]: a sequence of resolution steps using for every
resolution step at least one clause of F . So addition of resolvents is generalised
by addition of asymmetric tautologies (where addition steps always refer to the
current (enlarged) formula, the original axioms plus the added clauses). Asym-
metric tautologies, also known as reverse unit propagation (RUP) clauses, are
the most common learned clauses in conflict-driven clause learning (CDCL) SAT
solvers (see [38, Subsection 4.4]). We note that this extension is irrelevant from
the proof-complexity point of view, since it can be simulated by linearly many
resolution steps, however for practical applications exploitation of the power of
fast unit propagation algorithms is essential.

RAT clauses. We are seeking to add sat-preserving clauses beyond logically
implied clauses. The basic idea is as follows (proof left as instructive exercise):

Lemma 1. Consider a formula F , a clause C and a literal x ∈ C. If for all
x̄ ∈ D ∈ F holds F |= C ∪ (D \ {x̄}), then addition of C to F is sat-preserving.

In order to render the condition F |= C ∪ (D \ {x̄}) polytime-decidable, we
stipulate that the right-hand clause must be derivable by input resolution:

Definition 1 ([28]). Consider a formula F , a clause C and a literal x ∈ C
(the “pivot”). We say that C has RAT (“Resolution asymmetric tautology”) on
x w.r.t. F if for all D ∈ F with x̄ ∈ D holds that F ∧ C ∧D \ {x̄} `1 ⊥.

By Lemma 1, addition of RAT-clauses is sat-preserving. Every non-empty asym-
metric tautology C for F has RAT on any x ∈ C w.r.t. F . It is also easy to
see that the three extended resolution clauses are RAT clauses (using the new
variable for the pivot literals). All preprocessing, inprocessing, and solving tech-
niques in state-of-the-art SAT solvers can be expressed in terms of addition and
removal of RAT clauses [28].

3 Proofs of Unsatisfiability

A proof of unsatisfiability (also called a refutation) for a formula F is a sequence
of sat-preserving transitions which ends with some formula containing the empty
clause. There are currently two prevalent types of unsatisfiability proofs: resolu-
tion proofs and clausal proofs. Both do not display the sequence of transformed
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CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 2 4 0

2 0

0

Fig. 1. Left, a formula in DIMACS CNF for-
mat, the conventional input for SAT solvers which
starts with p cnf to denote the format, followed
by the number of variables and the number of
clauses. Right, a DRAT refutation for that for-
mula. Each line in the proof is either an addition
step (no prefix) or a deletion step identified by
the prefix “d”. Spacing is used to improve read-
ability. Each clause in the proof must be a RAT
clause using the first literal as pivot, or the empty
clause as an asymmetric tautology.

formulas, but only list the axioms (from F ) and the additions and (possibly) dele-
tions. Several formats have been designed for resolution proofs [48,16,5] (which
only add clauses), but they all share the same disadvantages. Resolution proofs
are often huge, and it is hard to express important techniques, such as conflict
clause minimization, with resolution steps. Other techniques, such as bounded
variable addition [37], cannot be polynomially-simulated by resolution at all.
Clausal proof formats [46,44,23] are syntactically similar; they involve a sequence
of clauses that are claimed to be sat-preserving, starting with the given formula.
But now we might add clauses which are not logically implied, and we also might
remove clauses (this is needed now in order to enable certain additions, which
might depend on global conditions).

Definition 2 ([46]). A DRAT proof (“Deletion Resolution Asymmetric Tau-
tology”) for a formula F is a sequence of additions and deletions of clauses,
starting with F , such that each addition is the addition of a RAT clause w.r.t.
the current formula (the result of additions and deletions up to this point), or, in
case of adding the empty clause, unit-clause propagation on the current formula
yields a contradiction. A DRAT refutation is a DRAT proof containing ⊥.

DRAT refutations are correct proofs of unsatisfiability (based on Lemma 1
and the fact, that deletion of clauses is always sat-preserving). Furthermore they
are checkable in cubic time. Since the proof of Lemma 1 is basically the same as
the proof for [32, Lemma 4.1], by adding unit propagation appropriately one can
transfer [32, Corollary 7.2] and prove, that the power of DRAT refutations is up
to polytime transformations the same as the power of Extended Resolution.

Example 1. Figure 1 shows an example DRAT refutation. Consider the CNF
formula F = (a ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b ∨ c ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨
c̄∨ d̄)∧ (ā∨ b∨ d)∧ (a∨ b̄∨ d̄), shown in DIMACS format in Fig. 1 (left), where
1 represents a, 2 is b, 3 is c, 4 is d, and negative numbers represent negation.
The first clause in the proof, (ā), is a RAT clause with respect to F because all
possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) `1 ⊥ using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) `1 ⊥ using (a ∨ c ∨ d)

F ∧ (a) ∧ (b) ∧ (d) `1 ⊥ using (a ∨ b̄ ∨ d̄)
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4 Cube-and-Conquer Solving

Arguably the most effective method to solve most hard combinatorial problems
via SAT technology is the cube-and-conquer paradigm [25], abbreviated by C&C,
due to strong performance and easy parallelization. C&C consists of two phases.
In the first phase, a look-ahead SAT solver [26] partitions the problem into many
(millions of) subproblems. These subproblems, expressed as “cubes” (conjunc-
tions) of the decisions (the literals set to true), are solved using a CDCL solver,
also known as the “conquer” solver. The intuition behind this combination of
paradigms is that look-ahead heuristics focus on global decisions, while CDCL
heuristics focus on local decisions. Global decisions are important to split the
problem, while local decisions are effective when there exist a short refutation. So
the idea behind C&C is to partition the problem until a short refutation arises.
C&C can solve hard problems much faster than either pure look-ahead or pure
CDCL. The problem with pure look-ahead solving is that global decisions be-
come poor decisions when a short refutation is present, while pure CDCL tends
to perform rather poor when there exist no short refutation. We will demon-
strate that C&C outperforms pure CDCL and pure look-ahead in Section 6.2.
Apart from improved performance on a single core, C&C allows for easy paral-
lelization. The subproblems are solved independently, so they are distributed on
a large cluster. In practice this results in almost a linear speedup. Other parallel
SAT solving paradigms, such as portfolio solvers, don’t scale that well, making
C&C the preferred approach for very hard problems.

There are two C&C variants: solving one cube per solver and solving multiple
cubes by a single incremental solver. The first approach allows solving cubes in
parallel, while the second approach allows for reusing heuristics and learned
clauses while solving multiple cubes. In our computation we combined them,
via a two-staged splitting, to exploit both advantages: having much parallelism,
while reusing heuristics and learned clauses as well. First the problem is split
into 106 cubes, and then each corresponding subproblem is split again and fed
to the incremental solver, which receives the input (sub-)formula and a sequence
of cubes1. For each cube, the problem is solved under the assumption that the
cube is true. If the solver can refute that assumption, it returns a subset of the
cube that was required to find a refutation. Learned clauses may not depend
on all literals in the cube. Hence, they can be useful for solving future cubes
as well. The SAT solver keeps some learned clauses, typically the shorter ones,
while solving multiple cubes.

5 Solving the boolean Pythagorean Triples Problem

Our framework for solving hard problems consists of five phases: encode, trans-
form, split, solve, and validate. The focus of the encode phase is to make sure
that representation of the problem as SAT instance is valid. The transform phase

1 In practice this is done using a single incremental CNF file. For details about the
format, see http://www.siert.nl/icnf/.
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1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

Fig. 2. Illustration of the framework to solve hard combinatorial problems. The phases
are shown in the rectangle boxes, while the input and output files for these phases are
shown in oval boxes.

reformulates the problem to reduce the computation costs of the later phases.
The split phase partitions the transformed formula into many, possibly millions
of subproblems. The subproblems are tackled in the solve phase. The validation
phase checks whether the proofs emitted in the prior phases are a valid refutation
for the original formula. Figure 2 shows an illustration of the framework.

5.1 Encode

The first phase of the framework focusses on making sure that the problem to be
solved is correctly represented into SAT. In the second phase the representation
will be optimized. The DRAT proof format can express all transformations.

Formula Fn expresses whether the natural numbers up to n can be partitioned
into two parts with no part containing a triple (a, b, c) such that a2 + b2 = c2.
One set will be called the positive part, while the other will be called the negative
part. Fn uses Boolean variables xi with i ∈ {1, . . . , n}. The assignment xi to true
/ false, expresses that i occurs in the positive / negative part, respectively. For
each triple (a, b, c) such that a2+b2 = c2, there is a constraint NotEqual(a, b, c)
in Fn, or in clausal form: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

5.2 Transform

The goal of the transformation phase is to massage the initial encoding to execute
the later phases more efficiently. A proof for the transformations is required
to ensure that the changes are valid. Notice that a transformation that would
be helpful for one later phase, might be harmful for another phase. Selecting
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transformations to apply is therefore typically a balance between different trade-
offs. For example, bounded variable elimination [15] is a preprocessing technique
that tends to speed up the solving phase. However, this technique is generally
harmful for the splitting phase as it obscures the look-ahead heuristics.

We applied two transformation steps to the formulas used during our experi-
ments, F7824 and F7825 . The first step is blocked clause elimination (BCE) [27].
BCE on these formulas has the following effect (due to Pythagorean triples
intersecting in at most one element): if a, b, or c occurs only in one constraint
NotEqual(a, b, c), then eliminate this constraint. BCE is applied until fixpoint:
removing a constraint NotEqual(a, b, c) because a occurs once, reduces the
occurrences of b and c by one. As a result b or c may occur only once after
the removal, allowing further elimination. A solution for the formula after the
transformation may not satisfy the original formula, however this can be easily
repaired [27]. The numerical effects of this reduction are as follows: F7824 has
6492 (occurring) variables and 18930 clauses, F7825 has 6494 variables and 18944
clauses, while after BCE-reduction we get 3740 variables and 14652 clauses resp.
3745 variables and 14672 clauses.

The second transformation is symmetry breaking [10]. The Pythagorean
Triples encoding has one symmetry: the two parts are interchangeable. To break
this, we can pick an arbitrary variable xi and assign it to true (or, equivalently,
put in the positive part). In practice it is best to pick the variable xi that occurs
most frequently in Fn. For the two formulas used during our experiments, the
most occurring variable is x2520 which was used for symmetry breaking.

Bounded variable elimination (a useful transformation in general) was not
applied. Bounded variable elimination substitutes away all variables xi if the
resulting formula after substitution has fewer or an equal number of clauses.
For our Pythagorean Triples encoding, initially variables occurring positively at
most three times would be eliminated. However these substitutions add clauses
that have a length larger than three. This would seriously harm the look-ahead
heuristics, as the specialized 3-SAT heuristics can no longer be used.

In order to validate the transformations applied during this phase, a proof is
required for each transformation. We will refer to this proof as the transformation
proof. The first part of this proof, expressing BCE is easy: Simply list all clauses
that are eliminated as clause deletion steps. The second part is more complicated.
Symmetry breaking can be expressed in the DRAT format, but it is tricky. A
recent paper [24] explains how to construct this part of the transformation proof.

5.3 Split

Partitioning is crucial to solve hard combinatorial problems. Effective partition-
ing is based on global heuristics [25] — in contrast to the “local” heuristics used
in CDCL solvers. The result of partitioning is a binary branching tree of which
the leaf nodes represent a subproblem of the original problem. The subproblem
is constructed by adding the conjunction of decisions that lead to the leaf as unit
clauses. Figure 3 shows such a partitioning as a binary tree with seven leaf nodes



9

(left) and the corresponding list of seven cubes (right). The cubes are shown in
the inccnf format that is used for incremental solvers to guide their search.

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

cube file in inccnf format

a 5 -3 0

a 5 3 7 0

a 5 3 -7 0

a -5 2 0

a -5 -2 3 -6 0

a -5 -2 3 6 0

a -5 -2 -3 0

Fig. 3. A binary branching tree (left) with the decision variables in the nodes and the
polarity on the edges. The corresponding cube file (right) in the inccnf format. The
prefix a denotes assumptions. Positive numbers express positive literals, while negative
numbers express negative literals. Each cube (line) is terminated with a 0.

Splitting heuristics are crucial in solving a problem efficiently. In practice, the
best heuristics are based on look-aheads [26,33]. In short, a look-ahead refers to
assigning a variable to a truth value followed by unit propagation and measuring
the changes to the formula during the propagation. It remains to find good
measures. The simplest measure is to count the number of assigned variables;
measures like that can be used for tie-breaking, but as has been realised in the
field of heuristics [33], the expected future gains for unit-clause propagation,
given by new short clauses, are more important than the current reductions.
The default heuristic in C&C, which works well on most hard-combinatorial
problems, weighs all new clauses using weights based on the length of the new
clause (with an exponential decay of the weight in the length). However for
our Pythagorean Triples encoding, using a refinement coming from random 3-
SAT turned out to be more powerful. Here all newly created clauses are binary,
i.e., ternary clauses that become binary during the look-ahead. The weight of a
new binary clause depends on the occurrences of its two literals in the formula,
estimating how likely the become falsified. This better performance is not very
surprising as the formulas Fn are somewhat related to random 3-SAT formulas:
i) all clauses have length three; and ii) the distribution of the occurrences of
literals is similar.

5.4 Details regarding the heuristics

The heuristics used for splitting extends the recursive weight heuristics [39],
based on earlier work [36,35,14,12], by introducing minimal and maximal values
α, β, and choosing different parameters, optimized for the special case at hand. A
look-ahead on literal l measures the difference between a formula before and after



10

assigning l to true followed by simplification. Let F (or Fl) denote the formula
before (or after) the look-ahead on l, respectively. We assume that F and Fl are
fully simplified using unit propagation. Thus Fl \F is the set of new clauses, and
the task is to weigh them; we note that each clause in Fl\F is binary. Each literal
is assigned a heuristic value h(l) and the weight wy∨z for (y∨z) ∈ Fl \F is h(ȳ) ·
h(z̄). The values of h(l) are computed using multiple iterations h0(l), h1(l), . . . ,
choosing the level with optimal performance, balancing the predictive power of
the heuristics versus the cost to compute it. The idea of the heuristic values
hi(l) is to approximate how strongly the literal l is forced to true by the clauses
containing l (via unit propagation). First, for all literals l, h0(l) are initialized
on 1: h0(x) = h0(x̄) = 1. At each step, the heuristics values hi(x) are scaled
using the average value µi:

µi =
1

2n

∑
x∈var(F )

(
hi(x) + hi(x̄)

)
. (1)

Finally, in each next iteration, the heuristic values hi+1(x) are computed in
which literals y get weight hi(ȳ)/µi. Weight γ expresses the relative importance
of binary clauses. This weight could also be seen as the heuristic value of a
falsified literal. Additionally, we have two other parameters, α expressing the
minimal heuristic value and β expressing maximum heuristic value.

hi+1(x) = max(α,min(β,
∑

(x∨y∨z)∈F

(hi(ȳ)

µi
· hi(z̄)
µi

)
+ γ

∑
(x∨y)∈F

hi(ȳ)

µi
)). (2)

In each node of the branching tree we compute h(l) := h4(l) for all literals
occurring in the formula. We use α = 8, β = 550, and γ = 25. The “magic” con-
stants differ significantly compared to the values used for random 3-SAT formulas
where α = 0.1, β = 25, and γ = 3.3 appear optimal [39]. The branching variable
x chosen is a variable with maximal H(x)·H(x̄), where H(l) :=

∑
y∨z∈Fl\F wy∨z.

5.5 Solve

The solving phase is the most straightforward part of the framework. It takes the
transformed formula and cube files as input and produces a proof of unsatisfiabil-
ity of the transformed formula. Two different approaches can be distinguished
in general: one for “easy” problems and one for hard problems. A problem is
considered easy when it can be solved in reasonable time, say within a day on a
single core. In that case, a single cube file can be used and the incremental SAT
solver will emit a single proof file. The more interesting case is when problems
are hard and two levels of splitting are required, allowing parallel solving.

The boolean Pythagorean triples problem F7825 is very hard and required
two level splitting: the total runtime was approximately 35, 000 CPU hours, or
equivalently 4 CPU years. Any problem requiring that amount of resources has
to be solved in parallel. The first level consists of partitioning the problem into a
million subproblems, for details see Section 6.2. Each subproblem is represented
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by a cube ϕi with i ∈ {1, . . . , 106} expressing a conjunction of decisions. On the
second level of splitting, each subproblem F7825∧ϕi is partitioned again using the
same look-ahead heuristics. In contrast to the first level, the cubes generated on
the second level are not used to create multiple subproblems. Instead, the second
level cubes are provided to a specialized SAT solver together with a subproblem
F7825 ∧ ϕi. The second level cubes are used to guide the CDCL solver. The
advantage of guiding the CDCL solver is that learned clauses computed while
solving one cube and can be reused when solving another cube.

For each subproblem F7825∧ϕi, the SAT solver produces a DRAT refutation.
Most state-of-the-art SAT solvers currently support the emission of such proofs.
One can check that the emitted proof of unsatisfiability is valid for F7825∧ϕi. In
this case, no changes to the proof logging of the solver are required. However, in
order to create an unsatisfiability proof of F7825 by concatenating the proofs of
subproblems, all lemmas generated while solving F7825 ∧ϕi need to be extended
with ϕi and the SAT solver is not allowed to delete clauses from F7825.

5.6 Validate

The last phase of the framework validates the results of the earlier phases. First,
the encoding into SAT needs to be validated. This can be done by proving
that the encoding tool is correct using a theorem prover. Alternatively, a small
program can be implemented whose correctness can be checked manually. For
example, our encoding tool consists of only 19 lines of C code. For details and
validation files, check out http://www.cs.utexas.edu/~marijn/ptn/.

The second part consists of checking the three types of DRAT proofs pro-
duced in the earlier phases: the transformation, tautology, and the cube proofs.
DRAT proofs can be merged easily by concatenating them. The required order
for merging the proofs is: transformation proof, cube proofs, and tautology proof.

Transformation Proof The transformation proof expresses how the initial
formula, created by the encoder, is converted into a formula that is easier to solve.
This part of the proof is typically small. The latest version of the drat-trim

checker supports validating transformation proofs without requiring the other
parts of the proof, based on a compositional argument [22].

Cube Proofs The core of the validation is checking whether the negation of
each cube, ϕi, is implied by the transformed formula. Since we partitioned the
problem using 106 cubes, there are 106 of cube proofs. We generated and vali-
dated them all. However, their total size is too large to share: almost 200 terabyte
in the DRAT format. We tried to compress the proof using a range of dedicated
clause compression techniques [21] combined with state-of-the-art general pur-
pose tools, such as bzip2 or 7z. After compression the total proof size was still
14 terabytes. So instead we provide the cube files for the subproblems as a cer-
tificate. Cube files can be compressed heavily, because they form a tree. Instead
of storing all cubes as a list of literals, shown as in Figure 3, it is possible to
store only one literal per cube. Storing the literal in a binary format [21] fol-
lowed by bzip2 allowed us to store all the cube files using “only” 68 gigabytes of
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disk space. Our specialized glucose 3.0 variant accepts cube files as additional
input and can reproduce the DRAT proofs in about 13,000 CPU hours. Check-
ing these proofs requires about 16,000 CPU hours, so reproducing the DRAT
proofs almost doubles the validation effort. This is probably a smaller burden
than downloading and decompressing many terabytes of data.

Tautology Proof A cube partitioning is valid, i.e., covers the complete search
space, if the disjunction of cubes is a tautology. This needs to be checked during
the validation phase. Checking this can be done by negating the disjunction of
cubes and feed the result to a CDCL solver which supports proof logging. If
the solver can refute the formula, then the disjunction of cubes is a tautology.
We refer to the proof emitted by the CDCL solver as the tautology proof. This
tautology proof will be part of the final validation effort.

6 Results

This section offers details of solving the boolean Pythagorean Triples problem2.
All experiments were executed on the Stampede cluster3. Each node on this
cluster consists of an Intel Xeon Phi 16-core CPU and 32 Gb memory. We used
cube solver march cc and conquer solver glucose 3.0 during our experiments.

6.1 Heuristics

In our first attempt to solve the Pythagorean triples problem, we partitioned
the problem (top-level and subproblems) using the default decision heuristic in
the cube solver march cc for 3-SAT formulas. After some initial experiments,
we estimated that the total runtime of solving F7825 would be roughly 300,000
CPU hours on our cluster. To reduce the computation costs, we (manually)
optimized the magic constants in march cc, resulting in the heuristic presented
in Section 5.4. The new heuristics reduced the total runtime to 35,000 CPU
hours, so almost an order of magnitude. Table 1 shows the results of various
heuristics on five randomly selected subproblems. We optimized march cc in
favor of the other heuristics to make the comparison more fair. In particular, we
turned off look-ahead preselection, which is helpful for the new heuristics (and
thus used in the computation), but harmful for the other heuristics.

6.2 Cube and Conquer

The first step of the solving phase was partitioning the transformed formula into
many subproblems using look-ahead heuristics. Our cluster account allowed for
running on 800 cores in parallel. We decided to partition the problem into a
multiple of 800 to perform easy parallel execution: exactly 106. Partitioning the
formula into 106 subproblems ensured that the conquer time of solving most
subproblems is less than two minutes, a runtime with the property that proof
validating can be achieved in a time similar to the solving time.

2 Files and tools can be downloaded at http://www.cs.utexas.edu/~marijn/ptn/
3 https://www.tacc.utexas.edu/systems/stampede
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Table 1. Solving times for C&C using different look-ahead heuristics and pure CDCL.
The top left, bottom left, and right numbers expresses the cube, conquer, and their
sum times, respectively. Ptn 3-SAT is 3-SAT heuristics optimized for Pythagorean triple
problems; rnd 3-SAT is the 3-SAT heuristics optimized for random 3-SAT (default);
count bin is the sum of new binary clauses; and count var is the number of assigned
variables.

cube # Ptn 3-SAT rnd 3-SAT count bin count var pure CDCL

104302
152.98

228.48
608.46

783.40
263.23

413.94
789.43

1053.22 1372.87
75.50 174.94 150.71 263.79

268551
74.03

107.86
92.09

140.91
98.93

154.76
487.45

707.72 150.06
33.83 48.82 55.83 220.27

934589
136.94

211.38
206.28

328.27
156.78

263.94
529.21

764.91 631.91
74.44 121.99 107.16 235.70

950025
143.69

217.78
152.49

252.16
203.18

341.27
550.47

777.46 330.61
74.09 99.67 138.09 226.99

980757
112.22

142.63
170.34

224.24
181.14

241.67
685.04

845.97 155.57
30.41 53.90 60.53 160.93

A simple way of splitting a problem into 106 subproblems is to build a bal-
anced binary branching tree of depth 20. However, using a balanced binary
branching tree results in poor performance on hard combinatorial problems [25].
A more effective partitioning heuristic picks the leaf nodes such that the number
of assigned variables in those nodes are equal. We observed that the best heuris-
tics for Pythagorean Triples formulas is to count the number of binary clauses in
each node. Recall that all clauses in the transformed formula are ternary. Select-
ing nodes in the decision tree that have about 3, 000 binary clauses resulted in
106 subproblems. Figure 4 (left) shows a histogram of the depth of the branching
tree (or, equivalently, the size of the cube) of the selected nodes. Notice that the
smallest cube has size 12 and the largest cubes have size 49.

Figure 4 (right) shows the time for the cube and conquer runtimes averaged
per size of the cubes. The peak average of the cube runtime is around size 24,
while the peak of the conquer runtime is around size 26. The cutoff heuristics of
the cube solver for second level splitting were based on the number of unassigned
variables, 3450 variables to be precise.

A comparison between the cube, conquer, and validation runtimes is shown
in Figure 5. The left scatter plot compares cube and conquer runtimes. It shows
that within our experimental setup the cube computation is about twice as
expensive compared to the conquer computation. The right scatter plot compares
the validation and conquer runtimes. It shows that these times are very similar.
Validation runtimes grow slightly faster compared to conquer runtimes. The
average cube, conquer, and validation times for the million subproblems are
78.87, 47.52, and 60.62 seconds, respectively.

Figure 6 compares the cube+conquer runtimes to solve the subproblems with
the runtimes of pure CDCL (using glucose 3.0) and pure look-ahead (using
march cc). The plot shows that cube+conquer clearly outperforms pure CDCL.
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Fig. 4. Left, a histogram (logarithmic) of the cube size of the 106 subproblems. Right,
average runtimes per size for the cube and conquer phase to solve subproblems.

Fig. 5. Left, a scatter plot comparing the cube and conquer time per subproblem.
Right, a scatter plot comparing the validation and conquer time per subproblem.

Fig. 6. Scatterplots comparing C&C to pure CDCL (left) and pure look-ahead (right)
solving methods on the Pythagorean Triples subproblems.
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Frequently speed-ups of two orders or magnitude can be observed on the harder
instances. Pure look-ahead is also slower compared to cube+conquer, but the
differences are smaller: on average cube+conquer is about twice as fast.

6.3 Extreme Solutions

Of the 106 subproblems that were created during the splitting phase, only one
subproblem is satisfiable for the extreme case, i.e., n = 7824. This suggests that
the formula after symmetry breaking has a big backbone. A variable belongs
to backbone of a formula if it is assigned to the same truth value in all solu-
tions. We computed the backbone of F7824, which consists of 2304 variables.
The backbone reveals why it is impossible to avoid Pythagorean Triples indef-
initely when partitioning the natural numbers into two parts: variables x5180
and x5865 are both positive in the backbone, forcing x7825 to be negative due
to 51802 + 58652 = 78252. At the same time, variables x625 and x7800 are both
negative in the backbone forcing x7825 to be positive due to 6252+78002 = 78252.

A satisfying assignment does not necessarily assign all natural numbers up
to 7824 that occur in Pythagorean Triples. For example, we found a satisfying
assignment that assigns only 4925 out of the 6492 variables occurring in F7824.
So not only is F7824 satisfiable, but it has a huge number of solutions.

7 Conclusions

We solved and verified the boolean Pythagorean Triples problem using C&C.
The total solving time was about 35,000 hours and the verification time about
16,000 hours. Since C&C allows for massive parallelization, resulting in almost
linear-time speedups, the problem was solved altogether in about two days on
our cluster. Apart from strong computational resources, dedicated look-ahead
heuristics were required to achieve these results. In future research we want
to further develop effective look-ahead heuristics that will work for such hard
combinatorial problems out of the box. We expect that parallel computing com-
bined with look-ahead splitting heuristics will make it feasible to solve many
other hard combinatorial problems that are too hard for existing techniques.
Moreover, we argue that solutions to such problems require certificates that can
be validated by the community — similar to the certificate we provided for the
boolean Pythagorean Triples problem. A fundamental question is whether The-
orem 1 has a “mathematical” (human-readable) proof, or whether the gigantic
(sophisticated) case-distinction, which is at the heart of our proof, is the best
there is?! It is conceivable that Conjecture 1 is true, but for each k has only
proofs like our proof, where the size of these proofs is growing so quickly, that
Conjecture 1 is actually not provable in current systems (like ZFC).
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and computing van der Waerden numbers. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing: 6th Interna-
tional Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Se-
lected Revised Papers, pages 1–13, Berlin, Heidelberg, 2004. Springer Berlin Hei-
delberg.

14. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-SAT formulae. In International Joint Conferences on Artificial Intelli-
gence (IJCAI), pages 248–253, 2001.

15. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In SAT 2005, volume 3569 of LNCS, pages 61–75. Springer,
2005.
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