1,076 research outputs found
Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy
A novel mid-infrared/near-infrared double resonant absorption setup for
studying infrared-inactive vibrational states is presented. A strong
vibrational transition in the mid-infrared region is excited using an idler
beam from a singly resonant continuous-wave optical parametric oscillator, to
populate an intermediate vibrational state. High output power of the optical
parametric oscillator and the strength of the mid-infrared transition result in
efficient population transfer to the intermediate state, which allows measuring
secondary transitions from this state with a high signal-to-noise ratio. A
secondary, near-infrared transition from the intermediate state is probed using
cavity ring down spectroscopy, which provides high sensitivity in this
wavelength region. Due to the narrow linewidths of the excitation sources, the
rovibrational lines of the secondary transition are measured with sub-Doppler
resolution. The setup is used to access a previously unreported symmetric
vibrational state of acetylene, in the
normal mode notation. Single-photon transitions to this state from the
vibrational ground state are forbidden. Ten lines of the newly measured state
are observed and fitted with the linear least-squares method to extract the
band parameters. The vibrational term value was measured to be at 9775.0018(45)
, the rotational parameter was 1.162222 ,
and the quartic centrifugal distortion parameter was 3.998(62), where the numbers in the parenthesis are one-standard
errors in the least significant digits
Seven exercises planned to stimulate the flow of ideas in creative composition
Thesis (Ed.M.)--Boston Universit
Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy
Peer reviewe
Acetylene in breath: background levels and real-time elimination kinetics after smoking
Peer reviewe
Fermi resonance-algebraic model for molecular vibrational spectra
A Fermi resonance-algebraic model is proposed for molecular vibrations, where
a U(2) algebra is used for describing the vibrations of each bond, and Fermi
resonances between stretching and bending modes are taken into account. The
model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to
fit the recently observed vibrational spectrum of the water molecule and arsine
(AsH_3), respectively, and results are compared with those of other models.
Calculations show that algebraic approaches can be used as an effective method
for describing molecular vibrations with small standard deviations
Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring
The effects of electron-electron interaction of a two-electron nanoring on
the energy levels and far-infrared (FIR) spectroscopy have been investigated
based on a model calculation which is performed within the exactly numerical
diagonalization. It is found that the interaction changes the energy spectra
dramatically, and also shows significant influence on the FIR spectroscopy. The
crossings between the lowest spin-singlet and triplet states induced by the
coulomb interaction are clearly revealed. Our results are related to the
experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223
(2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
A Proposed Master of Social Work Based in Indigenous Knowledges Program in Manitoba
This article focuses on an innovative proposed Master of Social Work based in Indigenous Knowledges program developed by an Indigenous Caucus within the Faculty of Social Work at the University of Manitoba in Canada. This culturally based program intends to ground students with a solid foundation in traditional Indigenous teachings and perspectives, and contemporary Indigenous philosophies, knowledges, concepts, critiques, and ways of being that stem from these traditions. The proposed Master of Social Work based in Indigenous Knowledges was developed as a lived program that builds community and social supports, and reclaims and re-energizes a sense of self, responsibility, self-sufficiency, self-determination, and self-government. The program’s aim is to deconstruct oppressive and colonialist structures and reconstruct, in a contemporary sense, what has been previously destroyed. An overview of the visions, objectives, program design, foundational themes and description of courses is provided, along with reflections on what teachings its development has provided
Magnetic field dependence of the exciton energy in a quantum disk
The groundstate energy and binding energy of an exciton, confined in a^M
quantum disk, are calculated as a function of an external magnetic field. The
confinement potential is a hard wall of finite height. The diamagnetic shift is
investigated for magnetic fields up to 40. Our results are applied to
self-assembled quantum dots and very good
agreement with experiments is obtained. Furthermore, we investigated the
influence of the dot size on the diamagnetic shift by changing the disk radius.
The exciton excited states are found as a function of the magnetic field. The
relative angular momentum is not a quantum number and changes with the magnetic
field strength.Comment: 10 pages, 17 figure
Coulombically Interacting Electrons in a One-dimensional Quantum Dot
The spectral properties of up to four interacting electrons confined within a
quasi one--dimensional system of finite length are determined by numerical
diagonalization including the spin degree of freedom. The ground state energy
is investigated as a function of the electron number and of the system length.
The limitations of a description in terms of a capacitance are demonstrated.
The energetically lowest lying excitations are physically explained as
vibrational and tunneling modes. The limits of a dilute, Wigner-type
arrangement of the electrons, and a dense, more homogeneous charge distribution
are discussed.Comment: 10 pages (excl. Figures), Figures added in POSTSCRIPT, LaTe
Infrared Excess in the Be Star Delta Scorpii
We present infrared photometric observations of the Be binary system delta
Scorpii obtained in 2006. The J,H and K magnitudes are the same within the
errors compared to observations taken 10 months earlier. We derive the infrared
excess from the observation and compare this to the color excess predicted by a
radiative equilibrium model of the primary star and its circumstellar disk. We
use a non-LTE computational code to model the gaseous envelope concentrated in
the star's equatorial plane and calculate the expected spectral energy
distribution and Halpha emission profile of the star with its circumstellar
disk. Using the observed infrared excess of delta Sco, as well as Halpha
spectroscopy bracketing the IR observations in time, we place constraints on
the radial density distribution in the circumstellar disk. Because the disk
exhibits variability in its density distribution, this work will be helpful in
understanding its dynamics.Comment: 12 pages, 14 figures, to be published in PASP May 200
- …
