105 research outputs found

    LIMITED ANTIBODY EVIDENCE OF EXPOSURE TO MYCOBACTERIUM BOVIS IN FERAL SWINE (\u3ci\u3eSUS SCROFA\u3c/i\u3e) IN THE USA

    Get PDF
    Bovine tuberculosis is a chronic disease of cattle (Bos taurus) caused by the bacterium Mycobacterium bovis. Efforts have been made in the US to eradicate the disease in cattle, but spillover into wildlife and subsequent spillback have impeded progress in some states. In particular, infection in white-tailed deer (Odocoileus virginianus) has been followed by infection in cattle in some Midwestern states. Infection has also been documented in feral swine (Sus scrofa) on the Hawaiian island of Molokai and in various European countries, but no large-scale survey of antibody exposure to the bacteria has been conducted in feral swine in the US. We tested 488 sera from feral swine collected near previously documented outbreaks of bovine tuberculosis in cattle and captive cervids, in addition to 2,237 feral swine sera collected across the US from 1 October 2013 to 30 September 2014. While all but one of the samples were antibody negative, the results are important for establishing baseline negative data since feral swine are capable reservoirs and could be implicated in future outbreaks of the disease

    Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates

    Get PDF
    <div><p>Conventional control and eradication strategies for bovine tuberculosis (BTB) face tremendous difficulties in developing countries; countries with wildlife reservoirs, a complex wildlife-livestock-human interface or a lack of veterinary and veterinary public health surveillance. Vaccination of cattle and other species might in some cases provide the only suitable control strategy for BTB, while in others it may supplement existing test-and-slaughter schemes. However, the use of live BCG has several limitations and the global rise of HIV/AIDS infections has furthermore warranted the exploration of inactivated vaccine preparations. The aim of this study was to compare the immune response profiles in response to parenteral vaccination with live BCG and two inactivated vaccine candidates in cattle.</p><p>Twenty-four mixed breed calves (<i>Bos taurus</i>) aged 4–6 months, were allocated to one of four groups and vaccinated sub-cutaneously with live <i>M</i>. <i>bovis</i> BCG (Danish 1331), formalin-inactivated <i>M</i>. <i>bovis</i> BCG, heat-killed <i>M</i>. <i>bovis</i> or PBS/Montanide™ (control). Interferon-γ responsiveness and antibody production were measured prior to vaccination and at weekly intervals thereafter for twelve weeks. At nine weeks post-priming, animals were skin tested using tuberculins and MTBC specific protein cocktails and subsequently challenged through intranodular injection of live <i>M</i>. <i>bovis</i> BCG.</p><p>The animals in the heat-killed <i>M</i>. <i>bovis</i> group demonstrated strong and sustained cell-mediated and humoral immune responses, significantly higher than the control group in response to vaccination, which may indicate a protective immune profile. Animals in this group showed reactivity to the skin test reagents, confirming good vaccine take. Lastly, although not statistically significant, recovery of BCG after challenge was lowest in the heat-killed <i>M</i>. <i>bovis</i> group.</p><p>In conclusion, the parenteral heat-killed <i>M</i>. <i>bovis</i> vaccine proved to be clearly immunogenic in cattle in the present study, urging further evaluation of the vaccine in challenge studies using virulent <i>M</i>. <i>bovis</i> and assessment of vaccine efficacy in field conditions.</p></div

    Assessment of animal diseases caused by bacteria resistant to antimicrobials: Horses

    Get PDF
    In this opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to the health of horses have been assessed. The assessment has been performed following a methodology composed of information collected via an extensive literature review and expert judgement. Details on the methodology used for this assessment are explained in a separate opinion. A global state of play of antimicrobial-resistant Actinobacillus equuli, Dermatophilus congolensis, Enterococcus spp., Escherichia coli, Klebsiella pneumoniae, Pasteurella spp., Pseudomonas aeruginosa, Rhodococcus equi, Staphylococcus aureus and Streptococcus dysgalactiae subsp. dysgalactiae/equisimilis and Streptococcus equi subsp. equi and subsp. zooepidemicus has been provided. Among those bacteria, EFSA identified E.&nbsp;coli, Staphylococcus aureus and R. equi with more than 66% certainty as the most relevant antimicrobial-resistant bacteria in the EU, given their importance as causative agents of clinical disease in horses and the significant levels of resistance to clinically relevant antimicrobials. The animal health impact of these ‘most relevant’ bacteria as well as their eligibility of being listed and categorised within the animal health law framework will be assessed in separate scientific opinions

    Assessment of animal diseases caused by bacteria resistant to antimicrobials: cattle

    Get PDF
    In this opinion, the antimicrobial resistant bacteria responsible for transmissible diseases that constitute a threat to the health of cattle have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A&nbsp;global state of play on antimicrobial resistance in clinical isolates of Escherichia coli (non-VTEC), Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, Mycoplasma bovis, Moraxella bovis, Fusobacterium necrophorum and Trueperella pyogenes is provided. Among those bacteria, EFSA identified E.&nbsp;coli and S. aureus with ≥ 66% certainty as being the most relevant antimicrobial resistant bacteria in cattle in the EU based on the available evidence. The animal health impact of these most relevant bacteria, as well as their eligibility for being listed and categorised within the animal health law framework will be assessed in separate scientific opinions

    Assessment of animal diseases caused by bacteria resistant to antimicrobials: sheep and goats

    Get PDF
    In this opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to the health of sheep and goats have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A global state of play on antimicrobial resistance in clinical isolates of Staphylococcus aureus, Escherichia coli (non-VTEC), Pseudomonas aeruginosa, Dichelobacter nodosus, Moraxella ovis, Mannheimia haemolytica, Pasteurella multocida, Mycoplasma ovipneumoniae, Mycoplasma agalactiae, Trueperella pyogenes, Streptococcus uberis, Bibersteinia trehalosi, Campylobacter fetus, Mycoplasma mycoides subsp. capri, Mycoplasma capricolum subsp. capricolum, Fusobacterium necrophorum is provided. Among those bacteria, EFSA identified E.&nbsp;coli with ≥ 66% certainty as being the most relevant antimicrobial-resistant bacteria in sheep and goat in the EU based on the available evidence. The animal health impact of these most relevant bacteria, as well as their eligibility for being listed and categorised within the animal health law framework will be assessed in separate scientific opinions

    Assessment of animal diseases caused by bacteria resistant to antimicrobials: Poultry

    Get PDF
    open25siIn this opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to poultry health have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A global state of play is provided for: Avibacterium (Haemophilus) paragallinarum, Bordetella avium, Clostridium perfringens, Enterococcus faecalis and Enterococcus cecorum, Erysipelothrix rhusiopathiae, Escherichia coli, Gallibacterium spp., Mycoplasma synoviae, Ornithobacterium rhinotracheale, Pasteurella multocida, Riemerella anatipestifer and Staphylococcus aureus. Among those bacteria, EFSA identified Escherichia coli, Enterococcus faecalis and Enterococcus cecorum with ≥ 66% certainty as being the most relevant antimicrobial resistant bacteria in the EU based on the available evidence. The animal health impact of these most relevant bacteria, and their eligibility for being listed and categorised within the Animal Health Law Framework, will be assessed in separate scientific opinions.mixedNielsen S.S.; Bicout D.J.; Calistri P.; Canali E.; Drewe J.A.; Garin-Bastuji B.; Gonzales Rojas J.L.; Gortazar Schmidt C.; Herskin M.; Michel V.; Miranda Chueca M.A.; Padalino B.; Pasquali P.; Roberts H.C.; Spoolder H.; Stahl K.; Velarde A.; Viltrop A.; Winckler C.; Dewulf J.; Guardabassi L.; Hilbert F.; Mader R.; Baldinelli F.; Alvarez J.Nielsen S.S.; Bicout D.J.; Calistri P.; Canali E.; Drewe J.A.; Garin-Bastuji B.; Gonzales Rojas J.L.; Gortazar Schmidt C.; Herskin M.; Michel V.; Miranda Chueca M.A.; Padalino B.; Pasquali P.; Roberts H.C.; Spoolder H.; Stahl K.; Velarde A.; Viltrop A.; Winckler C.; Dewulf J.; Guardabassi L.; Hilbert F.; Mader R.; Baldinelli F.; Alvarez J

    Bovine Tuberculosis in Doñana Biosphere Reserve: The Role of Wild Ungulates as Disease Reservoirs in the Last Iberian Lynx Strongholds

    Get PDF
    Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation

    SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control

    Get PDF
    The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses

    Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants

    Get PDF
    EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases (‘Animal Health Law’). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of&nbsp;control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel&nbsp;of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1–25.8%) and 2.3% (95% CI: 1–5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR
    • …
    corecore