61 research outputs found
Influence of pressure driven secondary flows on the behavior of turbofan forced mixers
A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood
Hot-flow tests of a series of 10-percent-scale turbofan forced mixing nozzles
An approximately 1/10-scale model of a mixed-flow exhaust system was tested in a static facility with fully simulated hot-flow cruise and takeoff conditions. Nine mixer geometries with 12 to 24 lobes were tested. The areas of the core and fan stream were held constant to maintain a bypass ratio of approximately 5. The research results presented in this report were obtained as part of a program directed toward developing an improved mixer design methodology by using a combined analytical and experimental approach. The effects of lobe spacing, lobe penetration, lobe-to-centerbody gap, lobe contour, and scalloping of the radial side walls were investigated. Test measurements included total pressure and temperature surveys, flow angularity surveys, and wall and centerbody surface static pressure measurements. Contour plots at various stations in the mixing region are presented to show the mixing effectiveness for the various lobe geometries
Computation of three-dimensional flow in turbofan mixers and comparison with experimental data
A three dimensional, viscous computer code was used to calculate the mixing downstream of a typical turbofan mixer geometry. Experimental data obtained using pressure and temperature rakes at the lobe and nozzle exit stations were used to validate the computer results. The relative importance of turbulence in the mixing phenomenon as compared with the streamwise vorticity set up by the secondary flows was determined. The observations suggest that the generation of streamwise vorticity plays a significant role in determining the temperature distribution at the nozzle exit plane
International Systems Integration on the International Space Station
Over the next few months, the International Space Station (ISS), and human spaceflight in general, will undergo momentous change. The European Columbus and Japanese Kibo Laboratories will be added to the station joining U.S. and Russian elements already on orbit. Columbus, Jules Vernes Automated Transfer Vehicle (ATV) and Kibo Control Centers will soon be joining control centers in the US and Russia in coordinating ISS operations and research. The Canadian Special Purpose Dexterous Manipulator (SPDM) will be performing extra vehicular activities that previously only astronauts on EVA could do, but remotely and with increased safety. This paper will address the integration of these international elements and operations into the ISS, both from hardware and human perspectives. Interoperability of on-orbit systems and ground control centers and their human operators from Europe, Japan, Canada, Russia and the U.S. pose significant and unique challenges. Coordination of logistical support and transportation of crews and cargo is also a major challenge. As we venture out into the cosmos and inhabit the Moon and other planets, it's the systems and operational experience and partnership development on ISS, humanity's orbiting outpost that is making these journeys possible
Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium
We consider the Asakura-Oosawa model of hard sphere colloids and ideal
polymers in contact with a porous matrix modeled by immobilized configurations
of hard spheres. For this ternary mixture a fundamental measure density
functional theory is employed, where the matrix particles are quenched and the
colloids and polymers are annealed, i.e. allowed to equilibrate. We study
capillary condensation of the mixture in a tiny sample of matrix as well as
demixing and the fluid-fluid interface inside a bulk matrix. Density profiles
normal to the interface and surface tensions are calculated and compared to the
case without matrix. Two kinds of matrices are considered: (i) colloid-sized
matrix particles at low packing fractions and (ii) large matrix particles at
high packing fractions. These two cases show fundamentally different behavior
and should both be experimentally realizable. Furthermore, we argue that
capillary condensation of a colloidal suspension could be experimentally
accessible. We find that in case (ii), even at high packing fractions, the main
effect of the matrix is to exclude volume and, to high accuracy, the results
can be mapped onto those of the same system without matrix via a simple
rescaling.Comment: 12 pages, 9 figures, submitted to PR
Optimization of the Magnetic Field Topology in the Hall Effect Rocket with Magnetic Shielding
NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-1 (TDU-1) has been the subject of extensive technology maturation in preparation for flight system development. The TDU-1 thruster implements a magnetically shielded field topology and has demonstrated the elimination of the discharge channel erosion. Extensive wear testing the TDU Hall thrusters has identified the thruster front pole covers as the next life limiting component. This effort aims to explore and investigate alternate magnetic field topologies to assess whether reductions in the front pole cover erosion can be attained while still maintaining very low erosion rates on the discharge channel walls. NASA GRC and JPL have begun a magnetic field topology characterization and optimization study by designing four candidate magnetic field topologies that reduce the effectiveness of the shielding along the discharge channel walls with the intent to also reduce the erosion rates along the pole covers. Three of the four candidate magnetic field topologies have been manufactured subjected to an extensive test campaign that includes performance, plume, and stability characterization. In Phase I of the testing campaign, the thruster's oscillation magnitude and Laser Induced fluorescence (LIF) measurements of the plasma plume were performed for the three candidate topologies. In Phase I, the thruster's oscillation magnitude and LIF measurements were performed for the three candidate topologies. Phase I test results found that the B1 configuration attained lower oscillation levels than B0. Additionally, LIF measurements along the discharge chamber centerline found that upstream retraction of the thruster's peak magnetic field does result in an upstream shift of the acceleration zone but the magnitude of the shift does not correspond one-to-one to the shift in the location of the peak radial magnetic field magnitude. Phase II test segment will include performing performance, stability, plume, and erosion measurements for the various candidate magnetic field topologies
Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner.
Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV
Determination of “borderline resectable” pancreatic cancer – A global assessment of 30 shades of grey
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis. Accurate preoperative assessment using computed tomography (CT) to determine resectability is crucial in ensuring patients are offered the most appropriate therapeutic strategy. Despite the use of classification guidelines, any interobserver variability between reviewing surgeons and radiologists may confound decisions influencing patient treatment pathways. Methods: In this multicentre observational study, an international group of 96 clinicians (42 hepatopancreatobiliary surgeons and 54 radiologists) were surveyed and asked to report 30 pancreatic CT scans of pancreatic cancer deemed borderline at respective multidisciplinary meetings (MDM). The degree of interobserver agreement in resectability among radiologists and surgeons was assessed and subgroup regression analysis was performed. Results: Interobserver variability between reviewers was high with no unanimous agreement. Overall interobserver agreement was fair with a kappa value of 0.32 with a higher rate of agreement among radiologists over surgeons. Conclusion: Interobserver variability among radiologists and surgeons globally is high, calling into question the consistency of clinical decision making for patients with PDAC and suggesting that central review may be required for studies of neoadjuvant or adjuvant approaches in future as well as ongoing quality control initiatives, even amongst experts in the field
A molecular model for H2 interactions in aliphatic and aromatic hydrocarbons
A model for molecular hydrogen interacting with aliphatic and aromatic hydrocarbons is presented. The model has been derived using ab initio techniques and molecular dynamics simulations. In particular, quadrupole moments of hydrogen, and variation on energy with intermolecular distance of different conformations for the hydrogen-benzene couple were calculated using the Møller-Plesset method. Hydrogen was modelled using a two-centre Lennard-Jones potential plus electrostatic interactions. Lennard-Jones parameters were optimized on the basis of a correct reproduction of experimental data of hydrogen solubility in benzene and cyclohexane, calculated using the test particle insertion method. Different sets of parameters for specific interactions (hydrogen-aliphatic and hydrogen-aromatic systems) were considered avoiding the simple use of Lorentz-Berthelot combining rules. Additionally, structural and thermodynamic properties of hydrogen-benzene, hydrogen-cyclohexane and hydrogen in an equimolar mixture of benzene-cyclohexane at different low concentrations of hydrogen were investigated by means of molecular dynamics simulations. Electrostatic charges were taken from ab initio quantum mechanical calculations but after careful analysis of the calculated properties, their irrelevance was evidenced. Moreover, Coulombic interactions make simulations more expensive and, therefore, we do not recommend their inclusion in the modelling of hydrogen-aliphatic and aromatic interactions. © 2009 the Owner Societies
- …