945 research outputs found

    High electrical resistivity carbon/graphite fibers

    Get PDF
    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent

    Performance Evaluation of the Moistron and Inframike Moisture Gauges on the Pilot Paper Machine

    Get PDF
    The following work pertains to the correlation of the Industrial Nucleonics Moistron moisture meter and the General Electric Inframike. The readings from these two devices were compared to each other and to moisture on an oven dry basis. The moisture readings were taken on a furnish of a 50-50 hardwood, softwood mixture which had various additives added by means of metering pumps. The basis weights of the furnishes were varied for each of the additives. The readings on the Moistron were not taken from the machine chart but rather from a calibration tape placed below said chart. The General Electric Inframike readings were taken on the basis of a rough standardization with the CENCO moisture determining device (an infrared drying lamp). The readings of the two meters correlated quite closely in that the amount of the change from one furnish to another was about the same. The readings of the Moistron and that of the oven dry moisture were quite close; whereas, the readings on the Inframike varied from the oven dry moisture by about two per cent moisture. As the amount of additives and the basis weight increase, the readings of the meters vary more across the sheet. This is also shown in the oven dry readings were a little farther from the Inframike than those of the Moistron. This can be expected for the Inframike and could also be expected with the Moistron

    Investment and risk management analysis of proactive as against reactive network maintenance

    Get PDF

    Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia)

    Get PDF
    Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites

    Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers

    Get PDF
    Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals

    NASC-seq monitors RNA synthesis in single cells.

    Get PDF
    Sequencing of newly synthesised RNA can monitor transcriptional dynamics with great sensitivity and high temporal resolution, but is currently restricted to populations of cells. Here, we develop new transcriptome alkylation-dependent single-cell RNA sequencing (NASC-seq), to monitor newly synthesised and pre-existing RNA simultaneously in single cells. We validate the method on pre-labelled RNA, and by demonstrating that more newly synthesised RNA was detected for genes with known high mRNA turnover. Monitoring RNA synthesis during Jurkat T-cell activation with NASC-seq reveals both rapidly up- and down-regulated genes, and that induced genes are almost exclusively detected as newly transcribed. Moreover, the newly synthesised and pre-existing transcriptomes after T-cell activation are distinct, confirming that NASC-seq simultaneously measures gene expression corresponding to two time points in single cells. Altogether, NASC-seq enables precise temporal monitoring of RNA synthesis at single-cell resolution during homoeostasis, perturbation responses and cellular differentiation

    Glycosylation of Twisted Gastrulation is Required for BMP Binding and Activity during Craniofacial Development

    Get PDF
    Twisted gastrulation (TWSG1) is a conserved, secreted glycoprotein that modulates signaling of bone morphogenetic proteins (BMPs) in the extracellular space. Deletion of exon 4 of mouse Twsg1 (mTwsg1) is associated with significant craniofacial defects. However, little is understood about the biochemical properties of the corresponding region of the protein. We have uncovered a significant role for exon 4 sequences as encoding the only two glycosylation sites of the mTWSG1 protein. Deletion of the entire exon 4 or mutation of both glycosylation sites within exon 4 abolishes glycosylation of mTWSG1. Importantly, we find that constructs with mutated glycosylation sites have significantly reduced BMP binding activity. We further show that glycosylation and activity of TWSG1 recombinant proteins vary markedly by cellular source. Non-glycosylated mTWSG1 made in E. coli has both reduced affinity for BMPs, as shown by surface plasmon resonance analysis, and reduced BMP inhibitory activity in a mandibular explant culture system compared to glycosylated proteins made in insect cells or murine myeloma cells. This study highlights an essential role for glycosylation in Twisted gastrulation action
    corecore